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Poisson Distribution

Poisson Distribution is the discrete probability of
count of the events which occur randomly in a
given interval of time.

In Poisson distribution, the trials must be very
large while the probability of occurrences of
outcome under observation must be small. In
addition, the independence of trials and
consistency of probability from trial to trial
properties are required.






A random variable Y is said have a Poisson distribution

with parameter u if it takes integer values y=0,1,2... with
probability

Pr(Y = y) = e_"“y D)

for u > 0. The mean and variance of this distribution is

E(y) = pvar(y) = p(2)

Sincethe mean is equal to variance, any factor that affects
one will affect the other.










Example

* Number of accidents on a highway in a
certain area in a specified time

* Number of telephone calls received at small
business in an one-hour period.

* Number of customers that enter a bank in
an one -hour period.




Poisson Regression Model

Poisson regression is a form of regression analysis used to
model count data.

We write Poisson regression model in terms of the mean
response. We assume that there exists a function, g, that
relatives the mean of the response to linear predictor

gi) =ni = Bo+ Pr1xs + -+ Ppxy = x; B (2)
The function g is usually called the Link function. The relationship

between the mean and the linear predictor n is,
wi=9""m) =97 'B) (3)



Identity link function : gu)=mi=x; p

When this link is used, E(y;) = pj = x; B since p; =
97 ') =xi B

Log-link function : gu) =n(u;) = x; p
The relationship between the mean of the response
variable and the linear predictor is

i =g t(x;'p) = eXi P

The log link is particularly attractive for Poisson
distribution because it ensures that all of the predicted
values for response variable will be nonnegative.




Maximum likehood method
The method of maximum likelihood is used to estimate
the parameters in Poisson Regression. If we have a
random sample of n observations on the response y and
predictors x, than the likehood function is

=1
n
:.:"=1 HEYie_Zi:l Wi

H?:lyi!

LB;y) = ﬁﬂ'(yi) =
i=1

Where p; = g7 (x; " B).




We find parameter estimates by maximizing the log
likehood function

I(B;y) =InL(B;y) = TiyyiIn(uy) — T,y — X1, In(y;) (5)

Because the derivative of l(3; y) respect to B results in
U(B,y) = 0 is nonlinear function of B, B cannot be
directly solved. We use some other methods to find it.




Newton - Raphson method is based on Taylor series
expansion around some given point.

The Newton — Raphson iteration for solving U(B,y) = 0 is
U(Bk-y)

(6)
I(Br-y)

Pr+k = Pr +

2
where I (B, y) = _21BY) nd starts with an initial value

EYE
Bo-




Assume that we have J(B) = E(I(B,y)).
In many cases calculating J(B) is much more easier than

I(B,y). For this reason the iteration is modified to use
J(B) instead of I(B, y) as follows

_ U(Br,y)
Bi+k = B + 1B

(7)

This method is calling Fisher's scoring method.




Measures Goodness-of-Fit

In Poisson regression there are two common
measures for Goodness-of-Fit

* Pearson's Chi-squared
* Deviance

Both measures have approximate Chi-square
distributions under hypothesis that the corrent model
is appropriate for fixed number of combinations of
independent variables and large counts.



Pearson’s Chi-squared: x5 = Xiz, (yl_ﬂ‘)z (8)

Deviance: D =23}, {yi log (%) — (i - ﬁi)} (9)




The R-squared statistic does not extend to Poisson
regression models. Various pseudo R-squared tests have
been proposed. These pseudo measures have the property
that, when applied to the linear model, they match the
interpretation of the linear model R-squared. The Pseudo
R?is defined as

g B 4B _

1- ﬂl (10)
£(5o) ~24(Bo)

where [(B,) is the log likelihood of the model when only
the intercept is included.

The pseudo R? goes from o to 1 with 1 being a perfect fit.




1

7/ L,
5 X (E:Zk)iﬂiiix (1 —uz 2§ 2)

where y2(p;n) is the quantile function of the chi-squarea
distribution with n degrees of freedom.




When quantiles of the Gamma distribution are not
available, an accurate approximation to this exact interval

has been proposed
3

(k+1)(1— £ e )

9(k+1) 3vk+1
where z,/, denotes the standard normal deviate with
upper tail area o / 2.

An approximate large sample 95% confidence interval for
ePis calculated as

exp[ﬁ g o 1.96(36;;)]
where sep is a standart error.







Raw Residual

The raw residual is the different between the actual
response and the estimated value from the model. The
formula for the raw residual is

n=Yi— A

Pearson Residual
The Pearson residual corrects for the unequal variance in

the raw residuals by dividing by the standard deviation.

The formula for the Pearson residual is
p_Yi— M

ri
Hi




Deviance Residual
The deviance residual is another popular residual. It is
popular because the sum of squares of these residuals is

the deviance statistic. The formula for the deviance

residual is
2(yilog(yi/i;) — yi + i




DFBETAS - Measure of how much
an observation has effected the
estimate of a regression. Values
larger than 2/sqrt(n) in absolute
value are considered  highly
influential.




Measures of Influence

DFFITS - Measure of how much an
observation has effected its fitted
value from the regression model.
Values larger than 2*sqrt((k+1)/n) in
absolute value are considered highly
influential.

BETAS — Measure of how much an
observation has effected the
estimate of a regression. Values
larger than 2/sqrt(n) in absolute
value are considered  highly
influential.



Measures of Influence

DFFITS - Measure of how much an
observation has effected its fitted
value from the regression model.
Values larger than 2*sqrt((k+1)/n) in
absolute value are considered highly
influential.

DFBETAS - Measure of how much
an observation has effected the
estimate of a regression. Values
larger than 2/sqrt(n) in absolute
value are considered  highly
influential.

Leverage Values (Hat Diag) -
Measure of how far an observation
is from the others in terms of the
levels of the independent variables
(not the dependent variable).
Observations with values larger than
2(k+1)/n are considered to be
potentially highly influential, where
k is the number of predictors and n
is the sample size.



Measures of Influence

DFFITS - Measure of how much an
observation has effected its fitted
value from the regression model.
Values larger than 2*sqrt((k+1)/n) in
absolute value are considered highly
influential.

DFBETAS - Measure of how much
an observation has effected the
estimate of a regression. Values
larger than 2/sqrt(n) in absolute
value are considered  highly
influential.

Leverage Values (Hat Diag) -
Measure of how far an observation
is from the others in terms of the
levels of the independent variables
(not the dependent variable).
Observations with values larger than
2(k+1)/n are considered to be
potentially highly influential, where
k is the number of predictors and n
is the sample size.

Cook’s D - Measure of aggregate
impact of each observation on the
group of regression coefficients, as
well as the group of fitted values.
Values larger than 4/n are
considered highly influential.



Data from publication of [T =TT T+ T3
Statistic Department of

Penn State collage.




One-Sample Kolmogorov-Smirnov Test

N

Poisson Mean
Parameter(a,b)

Most Extreme  Absolute
Differences Positive

Negative
Kolmogorov-Smirnov Z
Asymp. Sig. (2-tailed)

a Test distribution is Poisson.
b Calculated from data.







l1clients
Term Coef SE Coef 95% CI Z-Valus P-Valus VIF

Constant 0,308 0,289 (-0,259; 0,875) 1,06 0,287
= 0,07¢c4 0,0173 (0,0424; 0,1103) 4,41 0,000 1,00

Regression Equation

exp(Y"')
x* 0,308 + 00,0764 x

Regression Model :
y = exp(0,308 + 0,0764 X)

The p value for x is 0.000. it means the predictor is highly significant

The 95% confidence interval:
for ePois exp[0.308 + 1.96(0.289)]—[-0.289;0.875]
for ePiis exp[0.764 + 1.96(0.0173)]—[0.0424;0.1103]




Deviance at Each Iterative Step

Step Deviance
1 28,118609
2°7,842234

2
3 21;842092
4 27,842092

Number of iterations is 4.




Deviance Table

Source DF Seq Dev Contribution Adj Dev Adj Mean Chi-Sguare P-Value

Regression 1 20,47 42,37% 20,47 20,4677 20,47 0,000
X 1 20,47 42,37% 20,47 20,4677 20,47 0,000

Error 28 27,84 57,63% 27,84 00,9944

Total 29 48,31 100,00%




Deviance Table

Source DF Seq Dev Contribution Adj Dev Adj Mean Chi-Square P-Value

Regression 1 20,47 42,37% 20,47 20,4677 20,47 0,000
X 1 20,47 42,37% 20,47 20,4677 20,47 0,000

Error 28 27,84 57,63% 27,84 0,9944

Total 29 48,31 100,00%

The Deviance table includes the following:

e To test the null hypothesis which has no
predictors. Minus two times the log likehood for

the reduced model is —2{’@0) =48.31 ("Total"
row in the Deviance Table)
Minus two times the log likehood for the fitted

model is —Zf(ﬁ) =27.84 ("Error"” row in the
Deviance Table)

The deviance test statistic is D=48.31-27.84=20.47.
The p-value comes from a x2 distribution

with 2-1=1 degrees of freedom.




Goodness-of-Fit

Goodness—-of-Fit Tests

Test DF Estimate Mean Chi-Square P-Value
Deviance 28 27,84209 0,99436 27,84 0,473
Pearson 28 26,09324 0,93190 20; 09 D; 568

The high p values are indicate that there is no evidence of lack of fit




Pseudo R?

Model Summary
Deviance Deviance

R-Sg R-Sg(adj)
42,37% 40, 30%

R==1

- =2l(B) g
—21(B,

AIC
124,50

27.84
48.31

= 0.4237




-

FITS1 | DEVRES1 HI1 CO0OK1 DFIT1 DBET1
| -1,78045 [ 0,104459 | 0,103222 | -0,45436 | 0,184879 |
76891 | 0,784971 | 0,034763 | 0,012951 | 0,160944 | 0,025003 |
- 0,062181 | 0,019833 | -0,19916 | 0,037199
- | 0,03558 [ 0,042363 | -0,29108 | 0,081712
0,036357 | 0,000624 | 0,035341 | 0,001204
0,034763 [ 0,022614 | -0,21267 | 0,043656
0,060099 [ 0,006249 | -0,1118 | 0,011747
0,040969 [ 0,112531 | 0,474408 | 0,215842
| 0,05364 | 6,63€-05 | 0,011518 | 0,000126
0,180237 [ 0,076643 | 0,391517 | 0,125658
- 0,01859
0,03558 | 0,020039
0,060099 | 0,066237 | 0,363969 | 0,124512
0,004939 | 0,086873 0,001595 [ 2,32€-06 |
! ,039763 [ -0,282 |0,076268 |
7] 0,21953 | 0,046441
,030578 | 0,247298 | 0,058815 |
000505 | -0,03177 | 0,000928 |
0,036357 0,035341 [ 0,001204 |
17 0,007395
- -0,54049
,011747
0,04244 0,186501
0,07361 -0,25408
0,176278 | 0, ,001095
i 0,073616 | 0,008495
-0,65276 | 0,034763 | -0,11927
0,07437 | -0,38567 | 0,133052
29 [6,265215 | -0,10672 | 0,080542 [ 0,000535 | -0,0327 | 0,000983
30 |6,265215 [ 1,024812 | 0,080542 | 0,056864 | 0,337237
|
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Fits and Diagnostics for Unusual Observations

Obs ¥ Fiz 3E Fis 85% CI Resid 3td Resid Del Resid HI Cook’s D

8 10,000 4,583 0,452 (4,171: 5,852) 1,874 Z,0z2 2,03 0,0405€8 e, 11
21 6,000 8,503 1,408 (6,147:; 11,7€3) -0,507 -1,04 -1,02 0,z23313z o, 15

Obs DFITS
8 0,474408 R

£l -0,540485
X

R Large residual
K Unusual X




Fits and Diagnostics for Unusual Observations

Obs ¥ Fiz B8E Fis 85% CI Resid 8Std Resid Del Resid HI Cook’s D
8 10,000 4,583 0,452 (4,171: 5,8552) 1,874 Z,02 2,03 0,040%5€5 e, 11
21 6000 8,503 1,408 (6,147:; 11,7€3) -0,507 -1,04 -1,02 0,23313z e, 15

Obs DFITS
8 0,474408 R
£ -0,540485
X

R Large residual
X TUnusual X

The default residuals in this output are deviance residuals,
so observation 8 has a deviance residual of 1.974 and a
studentized deviance residual of 2.02, while observation 21
has a leverage of 0.233132.
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Simple guiding questions will be provided to guide you how to respond to the about slides



