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COURSE TITLE: ECONOMETRICS 

CODE                                      : ECO 2102 

HOURS TAUGHT                   :  HOURS PER WEEK 

INSTRUCTOR                         : NANSAMBA BITIYALI 

PURPOSE OF THE COURSE 

The course contains the models and methods used to estimate relationships and test hypotheses 

concerning economic variables. This helps students in their research work. 

 LEARNING OUTCOMES 

By the end of the course unit, students should be able to ; 

• Explain the different terms used in econometrics 

• State and explain the methodology of econometrics 

• Test hypotheses concerning different variables 

• Formulate models 

• Use different analytical tools 

COURSE CONTENT 

INTRODUCTION 

• Definition of econometrics and other concepts 

• Application 

• Objectives of econometrics 

• Types of econometrics(theoretical and applied econometrics) 

• Methodology of econometrics 

• Data used in econometrics (time series data, cross sectional data, panel data and pooled data) 

CORRELATION ANALYSIS 

• Correlation and linearity 

• Pearson correlation coefficient 

• Spearman’s rank correlation coefficient 

• Partial correlation 

REGRESSION ANALYSIS 

• Simple linear regression model 

➢ Basic assumptions of the regression model 

➢ Reasons for an error term 
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➢ Estimation of parameters 

➢ Hypotheses testing 

• Multiple regression 

• Non linear regression 

DATA ANALYSIS 

• Types of tests 

• Decision rule 

• Errors and estimates 

• Autocorrelation 

• Multicollinearity 

• Solving simultaneous equations 

MODE OF DELIVERY 

• Lecture method 

• Group work 

• Reading assignments 

INSTRUCTIONAL MATERIALS 

• White board and markers 

• Computers 

COURSE ASSESSMENT 

• Continuous assessment test                                            20% 

• Assignments/ group work                                               20% 

• Final examination                                                              60% 
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2. Dominick S. and Derrick R: Statistics and Econometrics 2nd Edition 
3. Freund and Williams: Modern Business Statistics 
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ECONOMETRICS (ECO 2102) NOTES 

CHAPTER ONE 

1.0 INTRODUCTION: 

1.1WHAT IS ECONOMETRICS? 

Is concerned with the testing the theoretical propositions embodied in 

relations and with estimating the parameters involved. Econometrics is 

the science that combines economic theory with economic statistics 

and tries by mathematical and statistical methods to investigate the 

empirical support of the general law established by economic theory. 

It is a composition of economics, mathematics and statistics. Where 

economics is for developing a hypothesis, mathematics is for model 

building in a mathematical form and statistics deals with using 

statistical techniques to analyse the economic model, to estimate the 

unknown parameters of the model and using the estimates for 

statistical inference. 

Literally interpreted, econometrics means “economic measurement.” 
Although measurement is an important part of econometrics, the scope 
of econometrics is much broader, as can be seen from the following 
quotations: Econometrics, the result of a certain outlook on the role of 
economics, consists of 
the application of mathematical statistics to economic data to lend 
empirical support to the models constructed by mathematical 
economics and to obtain numerical results.  
 
Econometrics may be defined as the quantitative analysis of actual 
economic phenomena based on the concurrent development of theory 
and observation, related by appropriate methods of inference. 
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Econometrics may be defined as the social science in which the tools of 
economic theory, mathematics, and statistical inference are applied to 
the analysis of economic phenomena. 
Econometrics is concerned with the empirical determination of 
economic laws. 
 
I.2 WHY A SEPARATE DISCIPLINE? 
As the preceding definitions suggest, econometrics is an amalgam of 
economic theory, mathematical economics, economic statistics, and 
mathematical statistics. Yet the subject deserves to be studied in its 
own right for the following reasons. 
➢ Economic theory makes statements or hypotheses that are mostly 

qualitative in nature. For example, microeconomic theory states 
that, other things remaining the same, a reduction in the price of 
a commodity is expected to increase the quantity demanded of 
that commodity. Thus, economic theory postulates a negative or 
inverse relationship between the price and quantity demanded of 
a commodity. But the theory itself does not provide any numerical 
measure of the relationship between the two; that is, it does not 
tell by how much the quantity will go up or down as a result of a 
certain change in the price of the commodity. It is the job of the 
econometrician to provide such numerical estimates. Stated 
differently, econometrics gives empirical content to most 
economic theory. 

➢ The main concern of mathematical economics is to express 
economic theory in mathematical form (equations) without 
regard to measurability or empirical verification of the theory. 

➢ Econometrics, mainly interested in the empirical verification of 
economic theory.  The econometrician often uses the 
mathematical equations proposed by the mathematical 
economist but puts these equations in such a form that they lend 
themselves to empirical testing. And this conversion of 
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mathematical into econometric equations requires a great deal of 
ingenuity and practical skill. 

➢ Economic statistics is mainly concerned with collecting, 
processing, and presenting economic data in the form of charts 
and tables. These are the jobs of the economic statistician. It is he 
or she who is primarily responsible for collecting data on gross 
national product (GNP), employment, unemployment, prices, etc. 
The data thus collected constitute the raw data for econometric 
work. But the economic statistician does not go any further,not 
being concerned with using the collected data to test economic 
theories. 

 
 
1.3 OBJECTIVES/ GOALS OF ECONOMETRICS 

a) To judge the validity of economic theory. 
b) To supply the numerical estimates of the coefficients of the 

economic relationships that may be used for sound economic 
policies. 

c) To forecast the future values of the economic magnitude with a 
certain degree of probability. 

 
 
1.4 CATEGORIES OF ECONOMETRICS 
It is distinguished into two categories; 

i. Theoretical econometrics: deals with the development of the 
appropriate methods for measuring economic relationships 
described by econometric models. These methods may be 
classified into two groups; 
➢ Single equation techniques (simple regression analysis) 

which are applied to one relation at a time. 
➢ Simultaneous equation techniques (multiple regression) 

which are applied to all relationships of the model 
simultaneously. 
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Theoretical econometrics is concerned with spelling out the 
assumptions of the above methods, their properties and what happens 
when one or more of the assumptions of the methods are not fulfilled. 
ii. Applied econometrics: describes the practical value of 

econometric research. It deals with the application of 
econometric techniques developed in theoretical econometrics to 
different fields of economic theory for its verification and 
forecasting. Applied econometrics makes it possible to obtain 
numerical results from studies that are of great importance to 
planners. 

 
I.5 METHODOLOGY OF ECONOMETRICS 
How do econometricians proceed in their analysis of an economic 
problem? That is, what is their methodology? Although there are 
several schools of thought on econometric methodology, we present 
here the traditional or classical methodology, which still dominates 
empirical research in economics 
and other social and behavioral sciences. 
The traditional econometric methodology involves the  following steps: 
1. Statement of theory or hypothesis. 
2. Specification of the mathematical model of the theory 
3. Specification of the statistical, or econometric, model 
4. Obtaining the data 
5. Estimation of the parameters of the econometric model 
6. Hypothesis testing 
7. Forecasting or prediction 
8. Using the model for control or policy purposes. 
To illustrate the preceding steps,  consider the well-known Keynesian 
theory of consumption. 
1. Statement of Theory or Hypothesis 
Keynes stated:The fundamental psychological law . . . is that men 
[women] are disposed, as a 
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rule and on average, to increase their consumption as their income 
increases, but not as much as the increase in their income. In short, 
Keynes postulated that the marginal propensity to consume 
(MPC), the rate of change of consumption for a unit (say, a dollar) 
change in income, is greater than zero but less than 1. 
2. Specification of the Mathematical form of the theory 
Although Keynes postulated a positive relationship between 
consumption and income, he did not specify the precise form of the 
functional relationship between the two. For simplicity, a mathematical 
economist might suggest the following form of the Keynesian 
consumption function: 
Y = β1 + β2X , 0 < β2 < 1 ,where Y = consumption expenditure and X = 
income, and where β1 and β2, 
known as the parameters of the model, are, respectively, the intercept 
and slope coefficients. 
The slope coefficient β2 measures the MPC.  A model is simply a set of 
mathematical equations. 
If the model has only one equation, as in the preceding example, it is 
called a single-equation model, whereas if it has more than one 
equation, it is known as a multiple-equation model .The variable 
appearing on the left side of the equality sign is called the dependent 
variable and the variable(s) on the right side are called the 
independent, or explanatory, variable(s). Thus, in the Keynesian 
consumption function above ; consumption (expenditure) is the 
dependent variable and income is the explanatory variable. 
3. Specification of the Econometric Model  
This involves identifying the variables to be included and specifying the 
variable form. 
The purely mathematical model of the consumption function given in 
the function described earlier  is of limited interest to the 
econometrician, for it assumes that there is an exact or deterministic 
relationship between consumption and income. But relationships 
between economic variables are generally inexact. 
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Thus, if we were to obtain data on consumption expenditure and 
disposable income of a sample and plot these data on a graph paper 
with consumption expenditure on the vertical axis and disposable 
income on the horizontal axis, we would not expect all observations to 
lie exactly on the straight line of  because, in addition to income, other 
variables affect consumption expenditure. For example, size of family, 
ages of the members in the family, family religion, etc., are likely to 
exert some influence on consumption. To allow for the inexact 
relationships between economic variables, the econometrician would 
modify the deterministic consumption function as follows: 
Y = β1 + β2X + u. 
Where u, known as the disturbance, or error, term, is a random 
(stochastic) variable that has well-defined probabilistic properties. The 
disturbance term u may well represent all those factors that affect 
consumption but are not taken into account explicitly. 
4. Obtaining Data 
Obtain data on the variables by identifying the right data sources 
5. Estimation of the parameters of the Econometric Model 
Involves selection of the estimation techniques and estimating the 
parameters. 
 
6. Hypothesis Testing 
Assuming that the fitted model is a reasonably good approximation of 
reality, we have to develop suitable criteria to find out whether the 
estimates obtained are in accordance  with the expectations of the 
theory that is being tested.  
Such confirmation or refutation of economic theories on the basis of 
sample evidence is based on a branch of statistical theory known as 
statistical inference (hypothesis testing).  
 
7. Forecasting or Prediction 
If the chosen model does not refute the hypothesis or theory under 
consideration, we may use it to predict the future value(s) of the 
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dependent, or forecast, variable Y on the basis of known or expected 
future value(s) of the explanatory, or predictor, variable X. 
 
8. Use of the Model for Control or Policy Purposes 
Estimated model may be used for policy purposes by appropriate fiscal 
and monetary policy needs. 
 
 
1.6 DATA USED IN ECONOMETRICS 
The success of any economic analysis depends on the availability of the 
appropriate data used. 

a) Time series data: a time series is a set of observations on the 
values that a variable takes at different times. 

b) Cross sectional data: data on one or more variables collected at 
the same point in time e.g census , surveys on consumer 
expenditure. 

c) Pooled data ( combined data): this comprises of both time series 
and cross sectional data. 

d) Panel/ longitudinal/ panel  data: special type of pooled data in 
which the same cross sectional unit (e,g family or firm) is surveyed 
over time. 

1.7 RELEVANT TERMS 
➢ Dependent variable: is the explained variable or predictand or  

reggressand or  response variable or outcome or endogenous or 
controlled variable. Is the variable on which data is collected. 

➢  Explanatory  variable. Is the one used to explain the dependent 
variable. It is referred to as the independent variable or predictor 
or regressor, stimulus, exogenous, covariate or control variable. 

➢ Population- All subjects or objects possessing some common 
specified characteristic. The population in a statistical 
investigation is arbitrarily defined by naming its unique properties 

➢ Sample - A smaller group of subjects or objects selected from a 
large group (population) 
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➢ Parameters- A measurable characteristic of a population. A 
measurable quantity derived from a population, such as 
population mean or standard deviation 

➢ Statistics (singular –a statistic),Statistic - A measure obtained from 
a sample. It is a measurable quantity derived from a sample, such 
as the sample mean or standard deviation 

➢ Variable - A measurable characteristic. Individual measurements 
of a variable are called varieties, observations, or cases. 

➢ Primary data is the data published or used by an organization 
which originally collects them.  The data in the Population Census 
reports are primary because they are collected, compiled and 
published by the Population Census Commission. In the natural 
and social sciences, primary sources are often empirical studies -- 
research where an experiment was done or a direct observation 
was made. 

➢ Secondary Sources is the data published or used by an 
organization other than the one which originally collected them. 
You can think of secondary sources as second-hand information.  

➢ In nominal measurement the numerical values just "name" the 
attribute uniquely. No ordering of the cases is implied. For 
example, jersey numbers in basketball are measures at the 
nominal level. A player with number 30 is not more of anything 
than a player with number 15, and is certainly not twice whatever 
number 15 is. 

➢ In ordinal measurement the attributes can be rank-ordered. Here, 
distances between attributes do not have any meaning. For 
example, on a survey you might code Educational Attainment as 
0=less than H.S.; 1=some H.S.; 2=H.S. certificate; 3=some college; 
4=college transcript; 5 = post collegeIn this measure, higher 
numbers mean more education. But is distance from 0 to 1 same 
as 3 to 4?  Of course the interval between values is not 
interpretable in an ordinal measure. 
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➢ In interval measurement the distance between attributes does 
have meaning. For example, when we measure temperature (in 
Fahrenheit), the distance from 30-40 is same as distance from 70-
80. The interval between values is interpretable. Because of this, 
it makes sense to compute an average of an interval variable, 
where it doesn't make sense to do so for ordinal scales. But note 
that in interval measurement ratios don't make any sense - 80 
degrees is not twice as hot as 40 degrees (although the attribute 
value is twice as large). 

➢  ratio measurement there is always an absolute zero that is 
meaningful. This means that you can construct a meaningful 
fraction (or ratio) with a ratio variable. Weight is a ratio variable. 
In applied social research most "count" variables are ratio, for 
example, the number of clients in past six months. Why? Because 
you can have zero clients and because it is meaningful to say that 
"...we had twice as many clients in the past six months as we did 
in the previous six months." 

➢ Random or stochastic variable can take on a set of values positive 
or negative with a  given probability.  

➢ A model is a set of mathematical equations. 
 

CHAPTER TWO 
2.0 CORRELATION  ANALYSIS 

Correlation analysis is a group of techniques used to measure the 
strength of the relationship between two variables. This relationship 
can be positive or negative (linear ) or non linear. 

The scatter diagram is a chart that portrays the relationship between 
two variables. The values of the independent variable are portrayed on 
the horizontal axis (X – axis) and the dependent variable along the 
vertical axis (Y-Axis). 
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Adependent variable is a variable that is being predicted or estimated 
while an independent variable is a variable that provides the basis for 
estimation. It is the predictor variable.  

Linear Correlation Coefficient is a measure of the strength of the linear 
relationship between two sets of variables. It is a measure of the extent 
to which the points cluster about a straight-line. A measure of 
correlation between two variables is the Pearson’s product moment 
correlation coefficient or Pearson’s r after its founder Karl Pearson. The 
correlation coefficient is usually designated by the lower case r and may 
range from -1.00 to +1.00 inclusive (-1  r +1). A value of -1.00 indicates 
perfect negative correlation. A value of +1.00 indicates perfect positive 
correlation. A correlation coefficient of 0.0 indicates that there is no 
linear relationship between the two variables under consideration.   

The coefficient of correlation requires that both variables be at least of 
interval scale. The degree of strength of the relationship is not related 
to the sign (direction – or +) of the coefficient of correlation.  

For example, an r value of -0.60 represents the same degree of 
correlation as +0.60. An r of -0.70 represents a stronger degree of 
correlation than 0.40. An r of -0.90 represents a strong negative 
correlation and +0.15 a weak positive correlation. 

The Pearson’s product moment correlation coefficient or sample 
correlation coefficient  for variables x and y (r) is computed as below; 

𝑟 =  
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛(∑ 𝑥
2

)−(∑ 𝑥)2] [𝑛(∑ 𝑦
2

)−(∑ 𝑦)2] 

= 𝑏
𝑠𝑥

𝑠𝑦
   

Where; 
n  is the number of paired observations.  
ΣXY  is the sum of the products of X and Y. 
ΣX  is the X variable summed. 
ΣY  is the Y variable summed. 
ΣY2  is the X variable squared and the squares summed.  
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(ΣX)2  is the X variable summed and the sum squared.  
ΣY2  is the Y variable squared and the squares summed.  
(ΣY)2  is the Y variable summed and the sum squared.  
b                 is the estimated value from the regression 
equation 

or 𝑟𝑥𝑦 =
∑ 𝑥𝑖𝑦𝑖

√(∑ 𝑥𝑖
2)(∑ 𝑦𝑖

2)

 

where;  𝑥𝑖 = 𝑋𝑖 − �̅�  and 𝑦𝑖 = 𝑌𝑖 − �̅� 

Testing the Significance of the Correlation Coefficient 
A test of significance for the coefficient of correlation may be used to 
determine if the computed r could have occurred in a population in 
which the two variables are not related. To put it in the form of a 
question: Is the correlation in the population zero?    
For a two-tailed test the null hypothesis and the alternate hypothesis 
are written as follows: 
H0:  p = 0 (The correlation in the population is zero) 
H1:  p ≠ 0 (The correlation in the population is different from zero) 

The Greek lower case rho, p, represents the correlation in the 
population. The null hypothesis is that there is no correlation in the 
population, and the alternate that there is a correlation. 

From the way H1 is stated, we know that the test is two tailed. The 
alternate hypothesis can also be set as a one-tailed test. It could read 
“the correlation coefficient is greater than zero.” The test statistic 
follows the t distribution with n - 2 degrees of freedom. And is denoted 
as below; 
 

  𝑡 = 𝑟√
𝑛−2

1−𝑟2   

Example It is believed that the annual repair cost for a vehicle is related 
to its age. A sample of 10 vehicles revealed the results in the table 
below. 
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Repair cost in $ 
(y) 

72 99 65 138 170 140 114 83 101 110 

Age in years (x)  2 3 1 7 6 8 4 1 2 5 

a) Plot these data in a scatter diagram. Does it appear there is a 
relationship between repair cost and age? 

b) Compute the coefficient of correlation 
c) Determine at the 0.05 significance level whether the correlation in 

the population is greater than zero. 

Solution 

a) A scatter diagram 

 

b) The degree of association between age and repair cost is 
measured by the coefficient of correlation is computed as, 

𝑟 =  
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛(∑ 𝑥
2

) − (∑ 𝑥)2] [𝑛(∑ 𝑦
2

) − (∑ 𝑦)2] 
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Y X XY X2 Y2 

72 2 114 4 5,184 
99 3 297 9 9,801 

65 1 65 1 4,225 

138 7 966 49 19,044 

170 6 1,020 36 28,900 

140 8 1,120 64 19,600 

114 4 456 16 12,996 

83 1 83 1 6,889 

101 2 202 4 10,201 

110 5 550 25 12,100 

ΣY = 1,092 ΣX = 39 ΣXY = 4,903 ΣX2 = 209 ΣY2 = 128,940 

 
The totals are inserted into the formula and the value of r computed: 
 

𝑟 =  
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛(∑ 𝑥
2

) − (∑ 𝑥)2] [𝑛(∑ 𝑦
2

) − (∑ 𝑦)2] 

 

=
]092,1940,128*10][39209*10[

)1092*39(4903*10

22 −−

−
 =

936,96*569

442,6  = 
7479.426,7

442,6  = 0.8674 

The r of 0.867 suggests a strong positive correlation between the age of 
this annual repair costs. Implying that as the age of the car increases so 
does the annual repair cost 

The coefficient of determination (r2) is the square of the coefficient of 
correlation thus; 0.8672 = 0.7524 indicating that 75.2 percent of the 
variation in repair costs can be explained by the variation in the age of 
the car. 
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A test of hypothesis is used to determine if the correlation in the 
population could be zero. In this instance, suppose we want to show 
that there is a positive association between the variables. H0:  p ≤ 0 and 
H1: p > 0 

If the null hypothesis is not rejected, it indicates that the correlation in 
the population could be zero. If the null hypothesis is rejected, the 
alternate is accepted, and this indicates there is correlation in the 
population between the two variables and it is positive. 

The test statistic follows the Student’s (distribution with (n - 2) degrees 
of freedom. The alternate hypothesis given above specifies a one-tailed 
test in the positive direction. There are 8 degrees of freedom, (n - 2) = 
(10 - 2). The critical value for a one-tailed test using the 0.05 
significance level is 1.860. The decision rule is to reject the null 
hypothesis if the computed value of exceeds 1.860. The computed 
value of t is 4.92, found by using formula 

t =  
21

2

r

nr

−

−  =   
2)8674.0(1

2108674.0

−

−  =
2476.0

88674.0 = 
4976.0

4534.2 = 4.930 

Since the computed t value (4.930) exceeds the critical value (1.860), 
the null hypothesis is rejected and the alternate accepted. Concluding 
that there is a positive association between the age of the vehicle and 
the annual repair cost. That is the p-value is less than 0.05. 

The hypotheses can be tested using the Pearson statistical tables with 
n-2 degrees of freedom. 

Example two 

Using the following data results, test the hypotheses that there is no 
relationship between the variables at 5% level of significance. 

𝑛 = 75, ∑ 𝑥 = 2535, ∑ 𝑥2 = 115748, ∑ 𝑥𝑦 = 60168, ∑ 𝑦 = 1650, ∑ 𝑦2 = 303646 
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2.1 Spearman’s Rank Correlation Coefficient 
Is another type of correlation coefficient that is used to measure the 
strength of linear relationship between two variables x and y. The 
strength can be measured by converting the two sets of data into ranks 
and calculating the ordinary correlation coefficient using the rank. The 
Spearman’s Rank Correlation Coefficient is denoted as; 

rs = 1 - 
𝟔 ∑ 𝒅𝒊

𝟐

𝒏( 𝒏𝟐−𝟏)
 

Where; di is the difference in the corresponding pairs of ranks, n is the 
number of observations. 
The coefficient lies between -1 and +1. The interpretation is the same 
as that for Pearson’s correlation coefficient. 
0.7  c  1 implies a strong positive correlation 

0.4  c  0.7 implies a fairly positive correlation 

0  c  0.4 implies a weak positive correlation 

0 implies no correlation 
0  c  -0.4 implies a weak negative correlation 

-0.4  c  -0.7 implies a fairly negative correlation 

-0.7  c  -1implies a strong negative correlation 

-1 implies a perfect negative correlation 
 

Example: using the data below for the rankings of countries by two 
students, determine spearman’s rank correlation coefficient and 
interpret your results. 

Country Rankx Ranky di = (Rx-Ry) di
2 

A 1 10 -9 81 

B 10 4 6 36 

C 4 8 -4 16 

D 8 5 3 9 

E 7 3 4 16 
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F 2 11 -9 81 

G 3 9 -6 36 

H 5 6 -1 1 

I 6 7 -1 1 

J 11 1 10 100 

K 9 2 7 49 

Total    Σ di
2 = 426 

So, 
2

2 2

6 6 426 2556
1 1 1 0.936

( 1) 11(11 1) 1320
S

d
r

n n


= − = − = − = −

− −

  

Interpretation: there is a high negative correlation between the ranks 
of the students.  

To test the hypothesis about the relationship, the t-statistic with n-2 
degrees of freedom is used as used for Pearson’s coefficient. 
 
2.2  PARTIAL CORRELATION 
Refers to correlation between the dependent variable y and one of the 
explanatory variables that influence y given by x2 while variable x1 is 
considered but held constant. If the ordinary correlation coefficients for 
y and x1 , y and x2 and x1 and x2 are given as; ry1, ry2 and r12 respectively, 
the sample partial correlation coefficient for y and x2 with x1 held fixed 
is given by the formula below; 

𝑟𝑦2.1 =
𝑟𝑦2 − 𝑟𝑦1𝑟12

√(1 − 𝑟𝑦1
2 )(1 − 𝑟12

2

 

The square of the sample correlation coefficient is the sample 
coefficient of partial determination, which represents the ratio of the 
unexplained variation to the previously unexplained variation. That is; 
ry2

2 gives the proportion of the variation in the value of y that was 
unexplained by a regression line involving only x1 that can now be 
explained by including x2 in the model along with x2. 
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 EXAMPLE 

Given the number of lecture hours missed by 12 students taking an 
econometrics course , their final examination marks and test marks as 
below;  

student Final 
examination (y) 

Test marks (x1) Hours missed 
(x2) 

A 85 65 1 

B 74 50 7 

C 76 55 5 

D 90 65 2 

E 85 55 6 

F 87 70 3 

G 94 65 2 

H 98 70 5 

I 81 55 4 

J 91 70 3 

K 76 50 1 

L 74 55 4 

Find and interpret the partial correlation coefficient for y and x2 when 
x1 is held constant. 

SOLUTION 
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From the data ; ∑ 𝑥1𝑖 = 725, ∑ 𝑥1𝑖
2 = 44475, ∑ 𝑥1𝑖𝑦𝑖 = 61685, ∑ 𝑥2𝑖 =

43, ∑ 𝑥2𝑖
2 = 195, ∑ 𝑥2𝑖𝑦𝑖 = 3581, ∑ 𝑥1𝑖𝑥2𝑖 = 2540, ∑ 𝑦𝑖 = 1011. 

𝑟𝑦1 =
(12)(61685) − (1011)(725)

√[(12)(85905) − 10112][(12)(44475) − 7252]
= 0.862 

And ry2= -0.242, r12= -0.349 

Therefore; 𝑟𝑦2.1 =
−0.242−(0.862)(−0.349)

√[1−(0.862)2][1−(−0.3492]
= 0.124 

Interpretation:   the value ry2.1
2=0.015 indicates that the addition of x2to 

the regression equation results in only a 1.5% reduction in the variation 
of y that is unexplained by a regression line using only x1. Hence the 
number of lecture hours missed contributes very little in predicting a 
student’s grade in econometrics. 
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CHAPTER THREE 

3.0 REGRESSION ANALYSIS  
To study the relationship between two variables we use two techniques 
namely; regression and correlation analysis. 
 
3.1DIFFERENCES BETWEEN CORRELATION AND REGRESSION ANALYSIS 
➢ In regression analysis there is an asymmetry in the way the 

dependent and explanatory variables are treated. 
➢ In regression the dependent variable is assumed to be statistical, 

random or stochastic, that is have a probability distribution. 
➢ In regression the explanatory variable is assumed to have fixed 

values in repeated sampling. 
➢ In correlation analysis, the two variables are treated 

symmetrically. 
➢  In correlation there is no difference between the dependent and 

independent variables. 
➢ In correlation both variables are assumed to be random.  

 
3.11 OBJECTIVES OF REGRESSION ANALYSIS 
➢ Prediction of future observations. To estimate the mean value of 

the dependent variable given the value of the independent 
variable. 

➢ Assessment of the effect or relationship between explanatory on 
the response. 

➢ A general description of the data structure. 

Regression analysis this refers to fitting of a mathematical relationship 
between two variables say x and y where one is known “Independent 
or explanatory or exogenous variable”. And the unknown variable is 
referred to as the “Dependent or explained or endogenous variable”. 
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Using the fitted relationship we can make prediction of the dependent 
variable for any given value of the independent variable. For example; if 
the relationship between advertising expenses and sales for a given 
company is given, we can determine the value of sales that may result 
from spending a given amount of money in advertising. Such 
information is very useful to a company manager in determining how 
much the company can spend on advertising. In this case; advertising 
cost or expenses is the independent variable while the volume of sales 
is the dependent variable. 

Regression analysis involves two steps; 
 Specification; this relates to determining the nature of the 

relationship between the explained (dependent) and the 
explanatory (independent) variables. The  possible relationship 
that may result include; 

 Linear thus; Y = a + bx. Where; a is the intercept, b is the 
slope of the curve, Y is the dependent (explained) variable 
and x is the independent (explanatory) variable. 

 Quadratic thus; Y = a + bx + Cx2 
 Exponential thus; Y = abx 

Specification is facilitated by a scatter diagram; this is the plot of the 
dependent variable against the independent variable. Although the 
points may not fall on the same line; it generally shows the overall 
pattern of the relationship between the two variables thus a careful 
examination of the scatter diagram will indicate the possible 
relationship between these variables.  
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                       Positive Correlation                    No Correlation 
 
              y                                                  y 
 
 
 
 
 
 
                         r = +1          x                                    r +1     x 
 
                       Negative Correlation                     No Correlation                    
              y                                                  y   
 
 
 
 
 
 
                      r = -1             x                                 r -1        x 
 
 Estimation; this relates to how best you can determine the 

coefficient of the regression equation specified above 

Linear regression line; the linear regression line is the representation of 
the data plotted. The drawn line that fixes the data very well is called 
the line of best fit. 

Method of least squares; is the method used to find the line of best of 
fit which is called the regression line. y = a + bx. Where; a is the y 
intercept, b is the slope, x is the dependent variable and y is the 
independent variable. For every point on a scattered diagram there is a 
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unique value of (y-�̅�). This is the error term committed in estimating y 
by �̅�. By the least square method, we scam to minimize the sum of 
squares of observation values of the dependent variable from those 
estimated by the regression line. Thus; 𝛴(y-�̅�)2 should be minimal     

Interpretation of regression coefficient 
Given the regression equation or line y = a + bx, the regression 
coefficients of a and b can be interpreted as follows; a is the y intercept 
and it gives an estimate of a dependent variable when the independent 
variable is zero(x = 0). b is the slope of the regression line. It shows the 
change in y (the dependent variable) that the results from a unit change 
in x (the independent variable). The constant a and b are denoted by; 
y = a + bx 
�̅� = a + b�̅� 
a = �̅� -b�̅� 
 

a = 
∑ 𝑌

𝑛
 - 

𝑏 ∑ 𝑥

𝑛
   = 

∑ 𝑌−𝑏 ∑ 𝑥

𝑛
 

 
b = 

𝑛 ∑ 𝑋𝑌− ∑ 𝑋 ∑ 𝑌

𝑛 ∑ 𝑋2−(∑ 𝑋)2   = 
∑(𝑋𝑖−�̅�) (𝑌𝑖−�̅�)

∑(𝑋𝑖−�̅�)2  

 

Example1:Given the bivariate data below fit a regression line of y and x 
and hence predict y if x = 0 
x: 1 5 3 2 1 1 7 3  
y: 6 1 0 0 1 2 1 5  
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Solution: 

X Y x2 xy y = a + bx 

1 6 1 6 2.5708 

5 1 25 5 1.354 

3 0 9 0 1.9624 

2 0 4 0 2.2666 

1 1 1 1 2.5708 

1 2 1 2 2.5708 

7 1 49 7 0.7456 

3 5 9 15 1.9624 

Σx = 23 Σx = 16 Σx2 = 99 Σxy = 36  

�̅� = 2.875 �̅� = 2    

 

Fromb = 
𝒏 ∑ 𝑿𝒀− ∑ 𝑿 ∑ 𝒀

𝒏 ∑ 𝑿𝟐−(∑ 𝑿)𝟐   = 
(𝟖∗𝟑𝟔)−(𝟐𝟑∗𝟏𝟔)

(𝟖∗𝟗𝟗)–(𝟐𝟑)𝟐  =  
−𝟖𝟎

𝟐𝟔𝟑
  - 0.3042 

 
a = �̅� -b�̅�  = 2 -(-0.3042*2.875)  = 2 + 0.874575 = 2.8746 
 
y = a + bx = 2.875 + -0.3042x 

Example 2:Suppose the least squares principle was used to develop an 
equation expressing the relationship between annual salary and years 
of work experience. The equation is: 
 
  𝑦′  =  𝛼 + 𝛽x 
                         = 20,000 + 500x (in dollars) 

In this example, annual income is the dependent variable,𝑦′ and is 
being predicted on the basis of the employee’s years of work 
experience, x, the independent variable. The value of 500, which is b, 
means that for each additional year of work experience the employee’s 
salary increases by $500. Thus, we would expect an employee with 40 
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years of work experience to earn $5,000 more than one with 30 years 
of work experience. 

What does the 20,000 dollars represent? It is the value for 𝑦′ when x = 
0. Recall that this is the point where the line intersects the Y-axis. The 
values of 𝛼 and b in the regression equation are usually referred to as 
the ‘regression coefficients’.  
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3.2 ECONOMETRIC MODELS 

In econometrics, all relations between variables can be classified as 
either deterministic or stochastic. The variables are deterministic if 
one of the variables can explain the other with certainity, that is y=f(x) 
is a deterministic relationship between x and y if for each value of x 
there is only one corresponding value of y. 

A relationship is stochastic or non deterministic if for each value of x 
there is a whole probability distribution of values of y. thus for any 
value of x, the variable y may assume some specific value or fall within 
some specific interval with a probability smaller than one and greater 
than zero. 

A stochastic relationship is random in nature and can be derived from 
the model 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖 where y is the dependent variable, x is the 
independent variable and 휀𝑖 is the error/random/disturbance term, α 
and β are parameters to be determined. 

The model 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 is deterministic while adding the error term 
produces a stochastic relationship. In econometrics we deal with 
stochastic relations which can be represented using a simple linear 
regression model of the form 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖 . 

3.21 BASIC ASSUMPTIONS OF THE MODEL 

These are referred to as the basic classical assumptions and include; 

➢ Normality of the error term  

➢ Error term has zero mean, i.e E(휀𝑖)=0 

➢ Constant variance (homoscedasticity) i.e E(휀2)=δ2 

➢ Non-auto-regression i.e 𝐸(휀𝑖휀𝑗) = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗. 

➢ The regression model is linear in parameters  
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➢ Zero covariance between the error term and the explanatory 
variable i,e  E(Eixi)=0 

➢ Non-stochastic explanatory variable. The values of x are fixed in 
repeated samples. 

➢ The number of observations n must be greater than the number 
of parameters to be estimated. Alternatively, the number of 
observations n must be greater than the number of explanatory 
variables. 

➢ Variability in x values. The x values in a given sample must not all 
be the same. 

➢ The regression model is correctly specified. Alternatively, there is 
no specification bias or error in the model used in empirical 
analysis. 

➢ There is no perfect multicollinearity, that is there is no perfect 
linear relationship among the explanatory variables. 

3.22 THE SIGNIFICANCE OF THE STOCHASTIC DISTURBANCE TERM 
The disturbance term is a surrogate for all those variables that are 
omitted from the model but that collectively affect Y. The obvious 
question is: Why not introduce these variables into the model 
explicitly? Stated otherwise, why not develop a multiple regression 
model with as many variables as possible? The reasons are many. 
 
1. Vagueness of theory: The theory, if any, determining the behavior of 
Y may be, and often is, incomplete. We might know for certain that 
weekly income X influences weekly consumption expenditure Y, but we 
might be ignorant or unsure about the other variables affecting Y. 
Therefore, the term may be used as a substitute for all the excluded or 
omitted variables from the model. 
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2. Unavailability of data: Even if we know what some of the excluded 
variables are and therefore consider a multiple regression rather than a 
simple regression, we may not have quantitative information about 
these. A further difficulty is that variables such as sex, education, and 
religion are difficult to quantify. 
 
3. Core variables versus peripheral variables: Assume in a consumption 
income example that besides income X1, the number of children per 
family X2, sex X3, religion X4, education X5, and geographical region X6 
also affect consumption expenditure. But it is quite possible that the 
joint influence of all or some of these variables may be so small and at 
best nonsystematic or 
random that as a practical matter and for cost considerations it does 
not pay to introduce them into the model explicitly. One hopes that 
their combined effect can be treated as a random variable. 
 
4. Intrinsic randomness in human behavior: Even if we succeed in 
introducing all the relevant variables into the model, there is bound to 
be some“intrinsic” randomness in individual Y’s that cannot be 
explained no matter how hard we try. The disturbances, may very well 
reflect this intrinsic randomness. 
 
5. Poor proxy variables: Although the classical regression model 
assumes that the variables Y and X are measured accurately, in practice 
the data may be plagued by errors of measurement. 
Consider, for example, Milton Friedman’s well-known theory of the 
consumption He regards permanent consumption (Yp) as a function of 
permanent income (Xp). But since data on these variables are not 
directly observable, in practice we use proxy variables, such as current 
consumption (Y) and current income (X), which can be observable. 
Since the observed Y 
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and X may not equal Yp and Xp, there is the problem of errors of 
measurement. The disturbance term may in this case then also 
represent the errors of measurement.  
 
6. Principle of parsimony: we would like to keep our regression model 
as simple as possible. If we can explain the behavior of Y “substantially” 
with two or three explanatory variables and if 
our theory is not strong enough to suggest what other variables might 
be included, why introduce more variables? Let the error term 
represent all other variables. Of course, we should not exclude relevant 
and important variables just to keep the regression model simple. 
 
7. Wrong functional form: Even if we have theoretically correct 
variables explaining a phenomenon and even if we can obtain data on 
these variables, very often we do not know the form of the functional 
relationship between the regressand and the regressors. Is 
consumption expenditure a linear (invariable) function of income or a 
nonlinear (invariable) function? If it is the former, Yi = β1 + B2Xi + Ei is 
the proper functional relationship between Y and X, but if it is the 

latter, Yi = β1 + β2Xi + β3X2i+Ei may be the correct functional form. In 

two-variable models the functional form of the relationship can often 
be judged from the scatter gram. But in 
a multiple regression model, it is not easy to determine the appropriate 
functional form, for graphically we cannot visualize scattergrams in 
multiple dimensions. 
 
For all these reasons, the stochastic disturbances assume an extremely 
critical role in regression analysis. 
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3.3 DESIRABLE PROPERTIES OF AN ECONOMETRIC MODEL 

An econometric model is a model whose parameters have been 

estimated with some appropriate econometric technique. The 

goodness of an econometric model is judged according to the following 

desirable properties; 

➢ Theoretical plausibility; the model should be compatible with the 

postulates of economic theory. It must describe adequately the 

economic phenomenon which it relates. 

➢ Explanatory ability; it should be able to explain the observations 

of the actual world. 

➢ Accuracy of the estimates of the parameters; it should 

approximate as best as possible the true parameters of the 

structural model. It should possess the desirable properties of 

unbiasedness, consistency and efficiency. 

➢ Forecasting ability; it should produce satisfactory predictions of 

future values of the dependent variables. 

➢ Simplicity; it should represent economic relationships with 

maximum simplicity. 

3.4 ESTIMATION OF PARAMETERS 
There are different methods of estimating the parameters in the 
regression model which include; Least squares estimation method, 
maximum likelihood estimation methods, moments etc. 
 
3.31 LEAST SQUARES ESTIMATION METHOD (LSE) 
The principle of LSE involves minimizing the sum of squared deviations 
of the observed values from their mean. Given the model 
 𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖 and making the error term the subject leads to 휀𝑖 =
𝑌𝑖 − 𝛼 − 𝛽𝑥𝑖 
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➢ Take sum of squares: ∑ 휀𝑖
2 = ∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)2 

➢ Differentiate with respect to  𝛼 𝑎𝑛𝑑 𝛽 and equate the result to 
zero 

➢ 
𝑑 ∑ 𝑖

2

𝑑𝛼
= −2 ∑(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) = 0 and 

𝑑 ∑ 𝑖
2

𝑑𝛽
= −2 ∑ 𝑥𝑖(𝑦𝑖 − 𝛼 −

𝛽𝑥𝑖) = 0. 
➢ 𝑡𝑎𝑘𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑚𝑎𝑘𝑖𝑛𝑔 𝑦 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑜𝑟𝑚 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠. 
➢ ∑ 𝑦𝑖 = 𝑛𝛼 + 𝛽 ∑ 𝑥𝑖    𝑎𝑛𝑑 ∑ 𝑥𝑖𝑦𝑖 = 𝛼 ∑ 𝑥𝑖 + 𝛽 ∑ 𝑥𝑖

2 
➢ 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦 𝑓𝑜𝑟 𝛼 𝑎𝑛𝑑 𝛽 

➢ �̂� =
𝑛 ∑ 𝑥𝑖𝑦𝑖−∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥)

2 =
∑(𝑥−�̅�)(𝑦−�̅�)

∑(𝑥−�̅�)2  

➢ �̂� =
∑ 𝑥2 ∑ 𝑦−∑ 𝑥 ∑ 𝑥𝑦

𝑛 ∑ 𝑥2−(∑ 𝑥)
2  𝑜𝑟 𝛼 = �̅� − �̂��̅� 

3.4 The Standard Error of Estimate 

 

Rarely does the predicted value of Y’ agree exactly with the actual Y 
value. That is, we expect some prediction error. One measure of this 
error is called the ‘standard error of estimate’. This is written as Syx. 

The ‘Standard error of estimate’ is a measure of the scatter, or 
dispersion, of the observed values around the line of regression. A small 
standard error of estimate indicates that the independent variable is a 
good predictor of the dependent variable. 

The standard error, as it is often called, is similar to the standard 
deviation described in earlier. Recall that the standard deviation was 
computed by squaring the difference between the actual value and the 
mean. This squaring was performed for all n observations. For the 
standard error of estimate, the difference between the predicted value 
Y’ and the actual value of Y is obtained and that difference squared and 
summed over all n observations. The formula is: 

  sy.x  =   
2

)'( 2

−

−

n

YY       
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A more convenient computational form is formula: 
 

  𝑆𝑦𝑥 = √
∑ 𝑦2−𝛼 ∑ 𝑦−𝛽 ∑ 𝑥𝑦

𝑛−2
      

 
Where; 
𝛼 and 𝛽 are the regression coefficients 
Σy2 is the sum of the squares of the dependent variable 
ΣY  is the sum of the values of the dependent variables 
ΣXY  is the sum of the products of the dependent and independent 
variable 
n  is the sample size. 
 
Using example 1 above, calculate its standard error of estimate. 

 

Solution:  

X Y x2 Xy y = α +βx y2 

1 6 1 6 2.5708 36 

5 1 25 5 1.354 1 

3 0 9 0 1.9624 0 

2 0 4 0 2.2666 0 

1 1 1 1 2.5708 1 
1 2 1 2 2.5708 4 

7 1 49 7 0.7456 1 

3 5 9 15 1.9624 25 

Σx = 23 Σx = 16 Σx2 = 99 Σxy = 36  Σy2 = 68 
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From; syx =  √
∑ 𝑦2−𝛼 ∑ 𝑦−𝛽 ∑ 𝑥𝑦

𝑛−2
  =√

𝟔𝟖−(𝟐.𝟖𝟕𝟓∗𝟏𝟔)−(−𝟎.𝟑𝟎𝟒𝟐∗𝟑𝟔)

𝟔
= 

√
𝟔𝟖−𝟑𝟓.𝟎𝟒𝟖𝟖

𝟔
 

                   = √
𝟑𝟐.𝟗𝟓𝟏𝟐

𝟔
   =  √𝟓. 𝟒𝟗𝟏𝟗   = 2.34 

Regression assumptions the linear regression is based on these four 
assumptions; 
 For each value of x, there is a group of y values, and these y values 

are normally distributed 
 The means of these normal distributions of y values all lie on the 

straight line of regression 
 The standard deviations of these normal distributions are equal 
 The y values are statistically independent. This means that in the 

selection of a sample, the y values chosen for a particular x value 
do not depend on the y values for any other x value 

 

3.5 DISTRIBUTION OF THE DEPENDENT VARIABLE Y AND THE 
PARAMETER ESTIMATES OF α AND β 

The dependent variable Y is normally distributed with mean (α+βxi) and 
variance δ2 which is estimated by; 

 S2
yx= 

∑ 𝑦2−𝛼 ∑ 𝑦−𝛽 ∑ 𝑥𝑦

𝑛−2
 𝑜𝑟 

∑(𝑦−�̂�)2

𝑛−2
 𝑜𝑟 

𝑛−1

𝑛−2
[𝑠𝑦

2 − �̂�2𝑠𝑥
2] 

The estimator �̂� is normally distributed with mean α and variance 

𝑉(�̂�) = 𝛿2[
1

𝑛
+

�̅�2

∑(𝑥−�̅�)2] and the estimator �̂� is normally distributed 

with mean β and variance 𝑉(�̂�) =
𝛿2

∑(𝑥−�̅�)2 

3.51 PROPERTIES OF LSE 

Using finite sample properties, LSE are 
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➢ Unbiased because they are Best Linear Unbiased estimators. 
Unbiased estimator is one whose expected value is equal to the 
unknown population parameter. 

➢ They are efficient. That is, have minimum variance among all 
unbiased estimators. 

➢ Have all the desirable asymptotic properties since they are the 
same as the maximum likelihood estimators (consistent) 

EXAMPLE 

Using the data below, estimate the regression equation, the variance δ2 
and the variances of the estimators. 

x 77 50 71 72 81 94 96 99 67 

y 82 66 78 34 47 85 99 99 98 

 

3.52 COVARIANCE (𝜶 ̂, �̂�)  

By using the estimators instead of the parameters α and β , sampling 

errors are committed. The sign of this error 𝐸(𝛼 ̂– 𝛼)(�̂� − 𝛽) is the 

covariance of �̂� 𝑎𝑛𝑑 𝛽.̂ This covariance is given as 𝑐𝑜𝑣(�̂�, �̂�) =
−�̅�𝛿2

∑(𝑥−�̅�)2. 

Example: using the above example, compute the covariance of the 
estimators. 
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CHAPTER FOUR 

4.0 ESTABLISHING A CONFIDENCE INTERVAL FOR α AND β. 

Confidence intervals provide an alternative way of expressing the 
uncertainity in the estimates. For a (1-α)100% confidence region, any 
point that lies within the region represents a null hypothesis that would 
not be rejected at the 100α% level while every point outside represents 
a null hypothesis that would be rejected. Confidence region provides a 
lot more information than a single hypothesis test in that it tells us the 
outcome of a whole range of hypothesis about the parameter values. 

 

The formula for the confidence interval for the parameter estimates: 

➢ �̂� ± 𝑡∝
2⁄ , n-2*𝑠𝛽 , 𝑠𝛽= √𝑆

�̂�
2,  Variance 𝑆

�̂�
2 = 

𝑀𝑆𝐸

∑(𝑥−�̅� )2, and MSE = 
∑(𝑦−�̂�)2

𝑛−2
 

➢ �̂� ±𝑡∝
2⁄ , n-2*𝑠𝛼  , 𝑠𝛼 = √𝑠𝛼

2    where  𝑠𝛼
2 = 𝑀𝑆𝐸[

1

𝑛
+ �̅�2/ ∑(𝑥 − 𝑥)̅̅ ̅2] 

EXAMPLE: Use the previous example 1, to set the confidence 
interval for the data; given that  = 0.05 

Solution 
 

x y x2 xy y = a+bx y2 (y-�̂�) (y-�̂�)2 (x-�̅�) (x-�̅�)2 

1 6 1 6 2.5708 36 -30 900 -1.875 3.51563 

5 1 25 5 1.354 1 0 0 2.125 4.51563 

3 0 9 0 1.9624 0 0 0 0.125 0.01563 

2 0 4 0 2.2666 0 0 0 -0.875 0.76563 

1 1 1 1 2.5708 1 0 0 -1.875 3.51563 

1 2 1 2 2.5708 4 -2 4 -1.875 3.51563 

7 1 49 7 0.7456 1 0 0 4.125 17.01563 

3 5 9 15 1.9624 25 -20 400 0.125 0.01563 

23 16 99 36 16.0034 68 -52 1304 0 32.875 

From; 

�̂� ± ε but; ε =𝒕∝
𝟐⁄ , n-2*𝒔𝜷 , S = √𝑺

�̂�
𝟐 ,  Variance𝑺�̂�

𝟐  = 
𝑴𝑺𝑬

∑(𝒙−�̅� )𝟐,  
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and MSE = 
∑(𝒚−�̂�)𝟐

𝒏−𝟐
 

 

MSE = 
∑(𝒚−�̂�)𝟐

𝒏−𝟐
  = 

𝟏𝟑𝟎𝟒

𝟔
  = 217.33, such that 

 

Variance𝑺�̂�
𝟐  = 

𝑴𝑺𝑬

∑(𝒙−�̅� )𝟐   = 
𝟐𝟏𝟕.𝟑𝟑

𝟑𝟐.𝟖𝟕𝟓
 = 6.611 

 

S = √𝑺
�̂�
𝟐  = √𝟔. 𝟔𝟏𝟏 = 2.571; 𝒕𝟎.𝟎𝟐𝟓, 6 (2.447)         

 
Therefore; 

�̂� ± ε = -0.3042 ± (2.447*2.571) = [0.3042-6.2912, 0.3042+6.2912] = [-5.987, 6.5954]. 
 

4.2 CONFIDENCE INTERVAL FOR Y 
To determine the confidence interval for any given point (xi) on the 
population/regression line within the given x domain, we need to get 
the mean and variance of 𝑦.̂ the confidence interval is given as  

�̂� ± 𝑡𝛾
2,𝑛−2

√𝑠𝑥𝑦
2 [

1

𝑛
+

(𝑥𝑖 − �̅�)2

∑(𝑥 − 𝑥)̅̅ ̅2
] 

EXAMPLE: given the data below on absenteeism and age of a worker at 
an institution as below; 

X (age) 19 22 25 27 30 33 36 39 

Y 
(absent) 

8 10 9 7 5 6 5 4 

Determine a 95% confidence interval on the regression line when x is 
35. 

4.3 COVARIANCE OF X AND Y 

Covariance of x and y [Cov (x, y)] describes the strength and the 
direction of the linear relationship for random variables x and y. it is a 
measure of the relationship or association between the value of x and 
y. it is denoted as; 
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Cov (x, y) = 
∑[(𝒙𝒊−�̅�)(𝒚𝒊−�̅�)]

𝒏−𝟏
 

It can be looked at as a measure of the way in which values of x and y 
vary together. Where, large values of x tend to go with large values of y 
and small values of x with small values of y. 

The covariance will be positive for x larger and y smaller. For x smaller 
and y larger, covariance will be negative. We can express the 
correlation coefficient r as a function of standard deviation of random 
variables x and y and covariance thus; 

For a Population; r = 
𝑪𝒐𝒗 (𝒙,𝒚)

𝝈𝒙𝝈𝒚
  and a Sample; r = 

𝑪𝒐𝒗 (𝒙,𝒚)

𝑺𝒙𝑺𝒚
 

Where;𝜎𝑥𝑆𝑥 is the standard deviation of variable x and  
𝜎𝑦𝑆𝑦 Is the standard deviation of variable y 

 

CHAPTER FIVE 

5.0 GOODNESS OF FIT  

To establish how good the fitted line �̂� is to the sample observations of 
y, we can use the coefficient of determination R2. For no variations, all 
the points will lie on a horizontal line equal to the mean of y but in 
reality when values of y are plotted against x, they scatter around the 
line �̂� so that the variation of y can be measured by the difference 
between the observed values of y and �̅� on the right hand side and the 
residual term on the left. 

The total variation is equal to the variation due to the residual and due 
to regression; 

➢ ∑(𝑦 − �̅�)2 = ∑(�̂� − �̅�)2 + ∑(𝑦 − �̂�)2 , that is 
SST=SSR+SSE(residual) 
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➢ Which is the same as; ∑ 𝑦2 = ∑ �̂�2 + ∑ 𝑒2 

The measure of goodness of fit known as the coefficient of 
determination R2 which is computed using the following; 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ �̂�2

∑ 𝑦2
=

∑(�̂� − �̅�)2

∑(𝑦 − �̅�)2
 

Or R2= 1 −
∑ 𝑒2

∑ 𝑦2  𝑂𝑟 𝑅2 =
𝛽2 ∑(𝑥−�̅�)2

∑(𝑦−�̅�)2  

This coefficient lies between 0 and 1. A zero or near zero value of the 
coefficient signifies a poorest fit and a unit value (1) or near unit 
signifies the best fit. 
A very low value of R2 for a given sample means that; 

a) Sample regression line fits the observations rather poorly i.e 
variations in x leave y un affected. 

b) While x is the relevant explanatory variable, its influence on y is 
weak compared to the influence of the random disturbance. 

c) It implies that the regression equation is misspecified. 
The coefficient means that a percentage of the sample variation of y 
can be attributed to the variation of the fitted values of y.  
 
EXAMPLE I 
Given the data for price of a commodity and quantity sold in kilogrammes , 

Price (x) 100 90 80 70 70 70 70 
Quantity(y) 55 70 90 100 90 105 80 

Y^ 57.499 69.999 82.499 94.999 94.999 94.999 94.999 

 

i. Obtain SST,SSR and SSE 

➢ total sum of squares (TSS) =∑(𝑦 − 𝑦)̅̅ ̅2 = ∑ 𝑦2 − 𝑛(𝑦)̅̅ ̅2 =

51550 − 7 ∗ 84.2862 = 1821.429,  

➢ error sum of squares (ESS)=∑(𝑦 − �̂�)2, where 𝑦 = 𝑎 + 𝑏𝑥 such 

that  
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b=
𝑛 ∑ 𝑥𝑦−∑ 𝑥 ∑ 𝑦

𝑛 ∑ 𝑥2−(∑ 𝑥)2
=

(7∗45250)−(550∗590)

(7∗44100)−5502
=

−7750

6200
= −1.25 𝑎𝑛𝑑 𝑎 =

84.286 + (78.571 ∗ 1.25) = 182.499. 

𝑦 = 182.499 − 1.25𝑥𝑖 

𝐸𝑆𝑆 = 437.500. 

➢  regression sum of squares (RSS)=𝛽2 ∑(𝑥𝑖 − �̅�)2 ∑(�̂� − �̅�)2 =

1383.929.  

ii. Coefficient of determination R2 and comment on the results 
➢ R2= SSR/SST = 1383.929/1821. 429 = 0.76. This implies a very good 

fit to the data. 

 
5.1 TESTING FOR SIGNIFICANCE OF REGRESSION 

The hypothesis is stated as Ho: model not significance versus HA: model is 
significant at a given level of significance. The critical region is given as 𝐹𝑐 ≥
𝐹∝,[𝑘−1,𝑁−𝑘] (reject Ho). where k are the parameters estimated and n is the sample 

size. 
 
Using Analysis of variance (ANOVA), total variation is split into the explained 
variation and the unexplained variation; SST=SSR+SSE. 
Using the ANOVA table for regression, the significance of regression can be 
determined using the f-test. 

Source of 
variation 

Sum of 
squares 

Degrees of 
freedom 

Mean sum of 
squares 

f-computed 

Regression SSR K-1 SSR/K-1=MSR  
Error SSE N-K SSE/N-K=MSE FC=MSR/MSE 

Total  SST N-1   

Compare the computed f-statistic with the tabulated statistic at a level of 
significance. 
 
Alternatively, for model significance the hypothesis can be stated as follows; Ho: 
𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: 𝑛𝑜𝑡 𝑎𝑙𝑙 𝛽′𝑠𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜. the f-statistic is 

obtained using 𝐹𝑐 =

𝑅2

(𝑘−1)

(1−𝑅2)

(𝑁−𝐾)

, where R2 is the coefficient of determination. 

 The critical region is 𝑓𝑐 ≥ 𝑓∝,[𝑘−1,𝑁−𝐾] 
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EXAMPLE II: refer to example I above. Test for significance of regression using the 
f-test at 5% level of significance.  

➢ H0: not significant vs HA: significant 

➢ C.r: 𝑓 ≥ 𝑓∝,[1,𝑛−𝑘], 𝑓0.05,[1.5]=6.61 

Anova table  

S.o.v Degrees 
of 
freedom 

Sum of 
squares 

Mean 
sum of 
squares 

f-computed  

Regression 1 1383.929 1383.929 1383.929/87.5=15.816 

Error 5 437.50 87.5  
Total 6 1821.429   

➢ Decision: reject H0.  It is significant. 

 

5.2 TESTS OF HYPOTHESES 

To test the hypothesis that there is no relationship between the variables x and Y 
using the model 𝑦 = 𝛼 + 𝛽𝑥, the null hypothesis is stated as ; H0: β=0 [no 
relationship between x and y]. if no prior information about the values of the 
regression parameters is available , the alternative hypothesis is stated as; HA: 
β≠0. 
 

The test statistic is given as 𝑡 =
𝛽

𝑠𝛽
 at n-2 degrees of freedom. For a two tailed test 

(β≠0), the acceptance region is −𝑡∝

2
,𝑛−2 ≤

𝛽

𝑠𝛽
≤ 𝑡∝

2
,𝑛−2. 

The best test is achieved if we take the alternative hypothesis as β<0, where the 

rejection region is −𝑡∝,𝑛−2 ≤
𝛽

𝑠𝛽
. 

If there is prior knowledge about the values of the parameters, 

𝐻0: 𝛽 =̂ 𝛽0 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑖𝑠 𝑡 =
�̂�−𝛽0

𝑠𝛽
 ~𝑡𝑛−2. 

 
Alternatively, the F- test can be used to test for a relationship between the 

variables. The acceptance region for the hypothesis is 
𝑆𝑆𝑅

(
𝑆𝑆𝐸

𝑁−2
)

≤ 𝐹(1,𝑁−2). 

 
EXAMPLE  
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Given the data below for minimum bank deposits in thousands of shillings and 

number of new accounts opened. 

Branch Minimum deposit (x) New accounts (y) 

A 125 160 
B 100 112 

C 200 124 
D 75 28 

E 150 152 

F 175 156 
G 75 42 

H 175 124 
I 125 150 

J 200 104 
K 100 136 

i. Estimate regression model of the form �̂�=𝛽0 + 𝛽1𝑥𝑖.  

𝛽1 =
𝑛 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦

𝑛 ∑ 𝑥2 − (∑ 𝑥)2
=

(11 ∗ 186,200) − (1500 ∗ 1288)

(11 ∗ 226250) − 15002
=

116200

238750

= 0.487. 

𝛽0 = �̅� − 𝛽1�̅� = 117.091 − (0.487 ∗ 136.364) = 50.682 

Equation: 𝑦 = 50.682+0.487xi. 

ii. Variance for the estimator β1.  

𝑣(𝛽1) =
𝛿2

∑(𝑥 − �̅�)2
 

𝑤ℎ𝑒𝑟𝑒 𝛿2 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑠𝑦𝑥
2 =

∑ 𝑦2 − 𝛽0 ∑ 𝑦 − 𝛽1 ∑ 𝑥𝑦

𝑛 − 2

=
170,696 − (50.682 ∗ 1288) − (0.487 ∗ 186200)

11 − 2
= 1637.576 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒; 𝑣(𝛽1) =
1637.576

21704.546
= 0.0755. 
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iii. Test the hypothesis that 𝛽1 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝛽1 > 0 at 0.05 level of 

significance.  

➢ Ho: 𝛽1 = 0 𝑣𝑠 𝐻𝐴: 𝛽1 > 0 

➢ L.o.s α=0.05 

➢ C.r: 𝑡𝑐 > 𝑡∝,𝑛−2, 𝑡0.05,9 = 1.833 

➢ 𝑡𝑐 =
𝛽1

𝑠.𝑒(𝛽1)
=

0.487

√0.0755
= 1.7724 

➢ Decision: fail to reject H0. 

4.0 MULTIPLE  REGRESSION 


