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OUTLINE

“*POINT ESTIMATION (Properties and methods)

**INTERVAL ESTIMATION (For one mean, two means, variance,
proportions)

“*Sample size
“*Simple linear regression
“*More regression



Introduction

* In this section, we'll find good "point estimates"” and "confidence
intervals" for the usual population parameters, including:

* a population mean u
* the difference in two population means, u,—u,, say
* a population variance o?

2
. . . o
* the ratio of two population variances, 1/02, say
2

* a population proportion p
* the difference in two population proportions, p,—p,, say



* We will work on not only obtaining formulas for the
estimates and intervals, but also on arguing that they are
"good" in some way... unbiased, for example. We'll also
address practical matters, such as how sample size affects
the length of our derived confidence intervals. And, we'll
also work on deriving good point estimates and confidence
intervals for a least squares regression line through a set of
(x,y) data points.



Point Estimation

* In this lesson, we'll learn two methods, namely the method of
maximum likelihood and the method of moments, for deriving
formulas for "good" point estimates for population parameters.

 We'll also learn one way of assessing whether a point estimate is
"good." We'll do that by defining what a means for an estimate to be
unbiased.



Objectives

* To learn how to find a maximum likelihood estimator of a population
parameter.

* To learn how to find a method of moments estimator of a population
parameter.

e To learn how to check to see if an estimator is unbiased for a
particular parameter.

* To understand the steps involved in each of the proofs in the lesson.

* To be able to apply the methods learned in the lesson to new
problems.



Definitions

* Let us denote the n random variables arising from a random sample
as subscripted uppercase letters:

Xy, Xy, oo X,

* The corresponding observed values of a specific random sample are
then denoted as subscripted lowercase letters:

X1y Xgp weey X,



Definitions Il

Definition. The range of possible values of the parameter @ is called the parameter
space Q (the greek letter "omega™).

For example, if x denotes the mean grade point average of all college students, then
the parameter space (assuming a 4-point grading scale) is:

Q={u:0<u<4}
And, If p denotes the proportion of students who smoke cigarettes, then the parameter
space Is:

Q={p:0<p<1}



Definitions Il

Definition. The function of X, X,, ..., X, that Is, the statistic u(Xy, X, ..., X,), used
to estimate 6 is called a point estimator of 6.




Definitions |V

Definition. The function u(xy, X, ..., X,) computed from a set of data
IS an observed point estimate of 6.




Maximum Likelihood Estimation

Definition. Let X7, X5..... X, be a random sample from a distribution that depends on one or
more unknown parameters &y. t...., &, with probability density (or mass) function

flx:; 6y, 65...., 8,,). Suppose that (6, 65..... ,,) 1s restricted to a given parameter space Q. Then:

(1) When regarded as a function of 8y, 65...., 8,,. the joint probability density (or mass)
function of X7. X5....., X

L(Hl,gi',---,gm} — H f(mi;ﬂlﬁﬂiﬁ”'?gm)

i—=1

((61. bh..... 8,) in Q) 15 called the likelihood function.




() If:
[‘11-1(1‘1,1'2, - - '1"131'1)1“2(1.1:1'2: - ".III'!-):" . .,Hm(Ileg, - ?ﬂ:ﬂ}]

is the m-tuple that maximizes the likelihood function, then:

0; = wi(X1, Xa,. .., X,)
is the maximum likelihood estimator of &, fori=1. 2, ..., m.
(3) The corresponding observed values of the statistics in (2). namely:
(w1 (Z1, T2, - -, Tn), W (T1, T2y - - - Ty ooy U (T, T2y - - -, Ty

are called the maximum likelihood estimates of &, for i=1. 2. .... m.

NOTE

L(6) = P(Xy = 21, Xy = T3, Xo = Z,) = f(21;6) - f(22;0) - -~ f(2036) = n £(z:; )




* This definition of the terms

* (1) likelihood function,

* (2) maximum likelihood estimators, and
* (3) maximum likelihood estimates.

* So HOW DOES IT WORK?



EXAMPLES

Suppose we have a random
sample X7. X5..... X, where:

: : ¥

s X.=0if a randomly selected student does not

own a sports car, and
s X.=1 if a randomly selected student does own

a sports car.

Assuming that the .X; are independent Bernoulli

random variables with unknown parameter p. find the maximum likelihood estimator of p, the
proportion of students who own a sports car.



Solution




celihood, we need to find t

ikelihood L(p). We need to

Now, in order to implement the method of maximum

ne p that maximizes the

but on our calculus hats

now, since in order to maximize the function, we are
going to need to differentiate the likelihood function
with respect to p. In doing so, we'll use a "trick" that
often makes the differentiation a bit easier. Note
that the natural logarithm is an increasing function
of x:















Example [l

* Suppose the weights of randomly selected American female
college students are normally distributed with unknown
mean u and standard deviation g. A random sample of 10
American female college students yielded the following
weights (in pounds):

115 122 130 127 149 160 152 138 149 180

* Based on the definitions given above, identify the likelihood
function and the maximum likelihood estimator of u, the
mean weight of all American female college students. Using
the given sample, find a maximum likelihood estimate of u as
well.









Example Il

‘Let X, X,,..., X, be a random sample from a
normal distribution with unknown mean u and
variance ¢2. Find maximum likelihood
estimators of mean u and variance ¢2.















*Note that the maximum likelihood estimator
of g2 for the normal model is not the sample
variance S2. They are, in fact, competing
estimators. So how do we know which
estimator we should use for g2 ? Well, one way is
to choose the estimator that is "unbiased." Let's
go learn about unbiased estimators now.



Unbiased Estimation

* In MLE, we showed that if X; are Bernoulli random variables with
parameter p, then:

]_ﬂ
S
p ng

15 the maximum likelihood estimator of p. And, 1f X; are normally distributed random variables with

mean 4 and variance 2, then:

X o o XXX

T n

i =

are the maximum likelihood estimators of i and g, respectively. A natural question then is whether or
not these estimators are "good" in any sense. One measure of "good" 1s "unbiasedness."



Definition. If the following holds:

Eu(Xy, Xs,...,X,)] =0

then the statistic (X, Xo,..., X, ) is an unbiased estimator of the parameter £. Otherwise,
u( Xy, Xo,...,X,) is a biased estimator of 6.

Let © = h(X;, Xs,---,X,) be a point estimator for 6. The bias of point estimator O is defined
by

B(6) = E[0] —

Let © = h(X,;, Xs,---,X,) be a point estimator for a parameter 6. We say that © is an unbiased
of estimator of @ if

-~

B(©) =0, for all possible values of 6.

_ Definition: The bias of an estimator # of a parameter £ 1s the difference between the
All Things expected value of # and #; that is, Bias(d) = E(6)—6. An estimator whose bias is identically

Ltaliiiel equal to () is called unbiased estimator and satisfies E(#) = 6 for all #.




Example

It X: 1s a Bernoulli random variable with

parameter p. then:

1:'1
=—2. X

i—1

13 the maximum likelihood estimator (MLE)
of p. Is the MLE of p an unbiased estimator of p?






EXAMPLE |l

[t X; are normally distributed random variables

with mean u and variance g2, then:

LN P >

mn T

i =

are the maximum likelihood estimators of ¢ and a2,
respectively. Are the MLEs unbiased for their
respective parameters?















EXAMPLE [l

[t X are normally distributed random variables with

mean ¢ and variance g2, what is an unbiased

estimator of 27 Is 52 unbiased?









*In summary, we have shown that, if X, is a normally
distributed random variable with mean u and variance o2,
then S2 is an unbiased estimator of ¢2. It turns out, however,
that S2? is always an unbiased estimator of ¢?, that is,
for any model, not just the normal model. (Show that as a
homework.) And, although 52 is always an unbiased
estimator of 02, S is not an unbiased estimator of . (Show

that as a homework, too.)




Another Example

Let X1, X9, X3,..., X, bearandom sample. Show that the sample mean

X1+ Xo+...+X,

T

é:f:

is an unbiased estimator of # = EX;.

Solution

We have



Definition

The mean squared error (MSE) of a point estimator O, shown by ILISE{@], is defined as

MSE(©) = E[(6 — 0)?].

MNote that é — @ is the error that we make when we estimate # by él Thus, the MSE is a measure of the distance

between © and 6, and a smaller MSE is generally indicative of a better estimator.



Proof of MSE(@) = Var(0) + [B(0)]?

MSE; = E(f — 0)* = Var(d) + (E(f) — 6)* = Var(0) + (Bias of §)’
This 15 s0 because

E(# — 8)° E(6%) + E(6%) — 260 E(f)

= Var(8) + [E(#)] + 6* — 20E(#)

o &

= Var(f) + [E(f) - 0]

RECALL, B(6) = E(6) — @




For an unbiased estimator El" we have
MSE; = E(# — ) = Var(f)

and so, if an estimator is unbiased, its MSE is equal to its variance.



EXAMPLE

Let Xy, X9, X3, ..., X, be a random sample from a distribution with mean EX; = #, and variance Var(X;) = a’.

Consider the following two estimators for &

1.@1 — _X]_.

- BT X+ X+...4X
2.0, = X = Zuthatedts

- ~

Find MSE(©,) and MSE(BO5) and show thatforn > 1, we have

- o

MSE(©,) > MSE(O,).



Solution
We have

MSE(6,) = E[(6, — 6)?]
= E[(X; — EX,)?]

— Var(X;)

:JE.

To find MSE{IE?JE ), we can write
MSE(8,) = E[(6, — 6)’]

= E[(X —6)?
— Var(X — ) + (E[X — 6])°.



The last equality results from EY 2 = Var(Y) + [EY}E. where Y = X — 6. Now, note that

Var(X — 0) = Var(X)

since @ is a constant. Also, E[ X — #] = 0.Thus, we conclude

o e

MSE(6,) = Var(X)
2

Thus, we conclude forn = 1,

-~ -

MSE(©,) > MSE(O,).



Conclusion on MLE and Unbiasedness

* Sometimes it is impossible to find maximum likelihood
estimators in a convenient closed form. Instead, numerical
methods must be used to maximize the likelihood function.

*In such cases, we might consider using an alternative
method of finding estimators, such as the "method of
moments." Let's go take a look at that method now.



Method of Moments

* In short, the method of moments involves equating sample moments
with theoretical moments.

* So, let's start by making sure we recall the definitions of theoretical
moments, as well as learn the definitions of sample moments.



Definitions.

(1) E(X*) is the k™" (theoretical) moment of the distribution (about the origin), for k= 1, 2.

(2 FE [{X — ,u,jk] is the k™ (theoretical) moment of the distribution (about the mean),
fork=1.2, ..

(3) M. = L 3 Xf is the k™ sample moment, fork=1, 2. ...
n;,
1 » _
(4)M; = — S(X; — X)*is the Kth sample moment about the mean. for k=1, 2, ...

i—=1




One Form of the Method

 The basic idea behind this form of the method is to:

(1) Equate the first sample moment about the origin M; = l 3" Xi = X to the first
N i
theoretical moment E(X).

Tt

(2) Equate the second sample moment about the origin M, = 1 3" X7 to the second
n i

theoretical moment E(ijj.

(3) Continue equating sample moments about the origin, M, with the corresponding

theoretical moments E(X’?ﬁ, k= 3. 4. ... until you have as many equations as you have
parameters.

(4) Solve for the parameters.



* The resulting values are called method of moments
estimators. It seems reasonable that this method would
provide good estimates, since the empirical distribution
converges in some sense to the probability distribution.

* Therefore, the corresponding moments should be about
equal.

* In some cases, rather than using the sample moments about
the origin, it is easier to use the sample moments about the
mean. Doing so, provides us with an alternative form of the
method of moments.



Another Form of the Method

 The basic idea behind this form of the method is to:

1 x _
(1) Equate the first sample moment about the origin M; = - Y Xi = X to the first
i—=1

theoretical moment E(X).

(2) Equate the second sample moment about the mean M, = % Y (X; — X)? to the second

i=1

theoretical moment about the mean E[(X — u)?].

(3) Continue equating sample moments about the mean M with the corresponding

theoretical moments about the mean E[(X — u)*]. k= 3. 4. ... until you have as many
equations as you have parameters.

(4) Solve for the parameters.



EXAMPLE

Let X7. X5, .... X, be gamma random variables with parameters a and &, so that the probability density
function is:

f{:fﬂa} — mﬂt—lE—I;'r['}

for x = 0. Therefore. the likelihood function:

L(a,) = (P(;)Hﬂ )ﬂ(mg oo z,) lexp [_% > ;1:1_-]

i3 difficult to differentiate because of the gamma function I'(¢). So. rather than finding the maximum
likelihood estimators. what are the method of moments estimators of & and &7













The Gamma distribution

The gamma function is a real-valued non-negative function defined on (), 0o} in the
following manner

[Na) = [I e Fdr , a>0.
0
The Gamma function enjoys some nice properties. Two of these are histed below:
(a) T+ 1) =al(a) , (b) T(n)=(n-1)! (n integer).
Property (b) is an easy consequence of Property (a). Start off with I'(n) and use

Property (a) recursively along with the fact that I'(1) = 1 (why?). Another important
fact is that I'(1/2) = /7 (Prove this at home!).



Definition

A random variable ¥ 1s said to have a gamma distribution with parameters
o = 0and A = 01f and only 1f the density function of ¥ 1s

Tﬂ—lg—}fﬁ
fo={ BT

0, elsewhere,

0 <y < 00,

where

[Mio) =f v le™ dy.
0



The quantity I'(a) 1s known as the gamma function. Direct integration will verify
that I'(1) = 1. Integration by parts will verify that I'(@) = (& — 1)['(x — 1) for any
¢ = | and that I'(n) = (n — 1)), provided that n 1s an integer.



Beta Distribution

e Definition

A random variable Y 1s said to have a beta probability distribution with param-
eters = O and B = 01f and only 1if the density function of ¥ 1s

vl — y)f-!
- : 0<vy<l1.
fly) = B(a, B) ==
(), elsewhere,
where
! M(a)T(B)
Be.f)= | v 01—y 'ldy= .
(ce, B) ﬁ v (1= Y= Tt B



If ¥ 15 a beta-distributed random variable with parameters & = O and g = 0,
then

oY

and o2 =V(¥)= P

— E(Y) = .
H () o+ p c+ A ae+B+1)



By definition,

E(Y) = f e

o0

1 a—lg1 Bl
_ ¥y (1l —) ] 1
_ﬁ F[ Bap) @

I l
el — vy -1 4
E(a,ﬁ}ﬁ V(1 —w)" T ay
— Etg(;: :9';9} (because «¢ = 0 implies thatw + 1 = 0)
o + B) y N + DHI(B)
Fied)lI'(f)y Te+B+1)
e + B) " al'(a)(B) B vy

Fa)T(B)  (@+AT@+p) (@+p)




If X follows the Gamma(a, 3) distribution, the mean and variance of X can be
explicitly expressed in terms of the parameters:

E(X)=af3 and Var(X)=afs>.

We outline the computation of a general moment E(.X ‘E], where k 1s a positive integer.



We have,

- 1
E IF: — ?k' .—.rI.I'_H' e R
X = [ e
1 fxl —z/3 _k+a-1
= - S dr
;}'“F{ﬂ} i
B T(a + k)
- T(a) A=
(a+k—=1)---(a)T(a)

')
= gIE  (a+i-1).

The formulae for the mean and the variance should follow directly from the abowve
computation. Note that in the above derivation, we have used the fact that

f e~ A ol gy = T(a + k) 3°FF.
0

This is an immediate consequence of the fact that the gamma density with parameters
(v + k, 7) integrates to 1.



* Assignment:

* Derive the mean and variance of Gamma Distribution by Integration

 Show how Chi-Square and Exponential Distributions are derived from Gamma
Distribution. Determine their respective means and variances




OTHER PROPERTIES OF ESTIMATORS

* We have so far looked at UNBIASEDNESS
* Others Include

1. Sufficiency

2. Efficiency

3. Consistency



Sufficient Statistics

Objectives
In this Section, our goals are:
* To learn a formal definition of sufficiency.

* To learn how to apply the Factorization Theorem to identify a
sufficient statistic.

*To learn how to apply the Exponential Criterion to identify a
sufficient statistic.

* To extend the definition of sufficiency for one parameter to two (or
more) parameters.



Definition of Sufficiency

Definition. Let X;. X5, .... X, be a random sample from a probability distribution with
unknown parameter £. Then, the statistic:

Y = u(Xy, X, ..., X,)

15 said to be sufficient for & if the conditional distribution of Xj. X5, ..., X,. given the statistic
¥. does not depend on the parameter &.




Factorization Theorem

* While the definition of sufficiency provided on the previous page
may make sense intuitively, it is not always all that easy to find the
conditional distribution of X1, X2, ..., Xn given Y.

 Not to mention that we'd have to find the conditional distribution of
X1, X2, ..., Xn given Y for every Y that we'd want to consider a

possible sufficient statistic!

* Therefore, using the formal definition of sufficiency as a way of
identifying a sufficient statistic for a parameter 6 can often be a
daunting road to follow. Thankfully, a theorem often referred to as
the Factorization Theorem provides an easier alternative



Factorization Theorem. Let Y. X5. ... X, denote random variables with joint probability density function or jomnt
probability mass function f{xy, x5, ..., x,;; &), which depends on the parameter 6. Then, the statistic

Y =u(Xy, X, ..., X,) is sufficient for & if and only if the p.d.f (or p.m.f.) can be factored into two components, that
15:

flz1, 22, ..., 20; 0) = @lu(z1, 22, ..., zn); 0 R(z1, 22, . .., 20)
where:

» @ 15 a function that depends on the data xq. x5. .... x;,, only through the function u(xq. x5..... x,,), and
» the function h(x;, x5, ..., x,,) does not depend on the parameter £




Example

Let X7, X5, ... X}, denote a random sample from a Poisson distribution with

parameter /. = 0. Find a sufficient statistic for the parameter /.

Solution. Because X;. X5. ... X}, 1s a random sample, the joint
probability mass function of Xj. X5, ... X} 15, by independence:

f(z1,22,..., 205 A) = f(z15A) X fz2; A)X. .. X f(Z; A)

Inserting what we know to be the probability mass function of a Poisson random vanable with parameter /. the joint
p.m.f 1s therefore:
c'z\Al'] c'/\Azz e /\Al‘-n

i 2a50: 55 BnA) = X o D
:131! 2132! xn!

Now., simpliyfing. by adding up all 7 of the /s 1n the exponents, as well as all 77 of the x;'s 1n the exponents, we get:



f{I]_1 Iz,-..1Iﬂ;,.1-'IL} — {E ﬂ-;"-;;ILEL} % ( 1 )

rle.l ..z, !

Hev. lock at that! We just factored the joint p.m f mnfo two functions, one (@) being only a function of the statistic
Y = E?_l X, and the other (/i) not depending on the parameter A:

Therefore. the Factorization Theorem tellsus that ¥ = 37 | X; is a sufficient statistic for /. But. wait a second! We

can also write the joint p.m f as:

rylra! . x!

fle,za, ..,z A) = {E ""J‘Aﬂi'} « ( 1 )

Therefore, the Factorization Theorem tells us that ¥ = X 1s also a sufficient statistic for .|



If you think about 1t, 1t makes sense that Y = X and ¥ = } " | X, are both sufficient statistics. because if we know
V=X wecaneasilyfindV =%  X; And ifweknowY =Y" X, wecaneasilyfind} =X



Example [l

Let Xj. A5, ... X}, be a random sample from a normal distribution with mean  and

vanance 1. Find a sufficient statistic for the parameter 1.

Solution. Because X7, X5, ... X 1s a random sample. the joint probability density
function of Xj. X5. ... X} 15, by independence:
flzy, 22, .. zni ) = f(zs 1) X Flza; p)X. . X f(Z0; 1)

Inserting what we know to be the probability density function of a normal random
variable with mean i and variance 1. the joimnt p.d.f. 1s:

1
(2m)t/2

cap |~ a1~ | x —reap |- Ga2 1)

f(xl’xZwu,xn;y‘) = (27{)1""20

Collecting like terms. we get:

1 1
F(21 20 0o ni ) = —exp |—— Y (zi — p)’
NG RE P>
A trick to making the factoring of the joint p.d.f an easier task 1s to add 0 to the quantity in parentheses in the
summation. That 1s:



"-...,1
—
-
M
-

]
S
|
i,
v
=
I
b | =
N
—
K
I
-
+
)
I
=
I

(22)”
O
Now, squaring the quantity in parentheses, we get
# )= — =3 [ 2+ 2es — 2)(z - ) + (2 — 1)
L1, Ly . nny Ll ) = ey — T + 2( x4 :
o g (2m)m/2 P12 i=1 g o

And then distnibuting the summation. we get:

i

f{xliﬂ:zi...,ﬂ:ﬁ:#]={21‘:} E:t:p|: Z{x" ;1;3 1; #]Z{x{ :t:] %i{x #}z]

But, the middle term in the exponent 15 (, and the last term. because it doesn't depend on the index i, can be added
up 1 times:

FxpX500x




So, simplifying. we get:

o= {em |- ]}« (e [ 4550

i=1

==

In summary., we have factored the joint p.d.f into two functions, one (@) being only a function of the statistic Y = X
and the other (/) not depending on the parameter i

£, 2 ) ‘M‘E(I _@ﬂtz;jm exp |- %Zl(x - ;T:)EH]
\’

#[uf:?j;‘..:] j'-,(ir.'._r;,.._jr.,]




Example

Let 7. 45, .. X be a random sample from an exponential distnbution with

parameter &, Find a sufficient statistic for the parameter &.

Solution. Because X;. X5, .. X}, 15 a random sample, the jomnt
probability density function of Xy, A5, ... X, 15, by independence:
flzy,za, ...,z 8) = flz1;6) % flze; 0)x. .. x flzs; 8)

Inserting what we know to be the probability density function of an
exponential random variable with parameter &, the jomnt p.d.f. 1s:

T, Lo, ..., 0) = —ex ¥ —EI ... X —Er
flzy, @ ) r p( . ) , p( ) eep | —

Now, simplivfing. by adding up all »» of the &s and the » x;'s in the exponents. we get:

1 1
r1,T9, ..., 0) = —ex — T
fla:, 2 ) p= P( EZ )



We have again factored the jomnt p.d.f into two functions, one (@) being only a function of the statistic
Y = E?_l X; and the other (/1) not depending on the parameter &

Therefore, the Factorization Theorem tells us that ¥ = ¥, X, is a sufficient statistic for & And. sinceY = X isa
one-to-one function of ¥ = %" | X, it implies that ¥ = X 1s also a sufficient statistic for &.



Exponential Form

You mught not have noticed that in all of the examples we have considered so far in this lesson, everypdf orpm £
could we written 1n what 1s often called exponential form, that 1s:

f(x;0) = exp |[K(x)p(0) + S(z) + q(0)]

with (1) K(x) and S(x) being functions only of x, (2) p(#) and ¢(&) being functions only of the parameter &, and (3)
the support being free of the parameter #. First, we had Bernoulli random vanables with p.m f written in
exponential form as:

1-p/ ;T/

)

L

floip)= (1= p)"" =explinl 2 41al)+ 11
KGd  pep) ¢



with (1) K(x) and S(x) bemng functions only of x, (2) p(p) and g(p) being functions only of the parameter p, and

(3) the support x =0, 1 not depending on the parameter p. Okay, we just skipped a lot of steps m that second
equality sign, that 1s, i getting from pont A (the typical p.m £) to pomnt B (the p.m f wnitten 1n exponential form).
So, let's take a look at that more closely. We start with:

fla;p) =p*(1-p)**

Is the p.m f 1n exponential form? Doesn't look like it to me! We clearly need an "exp" to appear up front. The only
way we are going to get that without changing the underlymng function 1s by taking the mverse function, that 15, the
natural log ("In"), at the same time_Doing so, we get:

f(z;p) = ezp In(p*(1-p)" )]



Is the p.m.f now 1n exponential form? Nope, not yet, but at least it's looking more hopeful. All of the steps that
follow now involve using what we know about the properties of logarithms. Recognizing that the natural log of a

product 1s the sum of the natural logs, we get:
f(z; p) = exp In(p®) +1n(1 — p)* *]

Is the p.m.f now in exponential form? Nope, still not yet, because K(x), p(p), 5(x), and g(p) can't yet be 1dentified as

following exponential form. but we are certamnlv gettine closer. Recognizing that the log of a power 1s the power
tumes the log of the base, we get:

f(z:p) = exp [zln(p) + (1 — z)In(1 — p)|

Thas 15 getting tiring_ Is the p.m f 1n exponential form yet? Nope, afraid not yet. Let's distribute that (1—x) 1n that
last term. Doing so, we get:

fla;p) = explzln(p) +1n(l — p) — zln(1l — p)]



Is the p.m f now in exponential form? Let's take a closer look. Well, in the first term_ we can identify the K(x)p(p)
and in the middle term, we see a function that depends only on the parameter p:

f(x:p) = exp[xIn(p) + In(1 - p) - xIn(1 - p)]
/ 4 p
Ktxe) plp) %)

Now, all we need 1s the last term to depend only on x and we're as good as gold. Oh, rats! The last term depends on
both x and p. So back to work some more! Recogmzing that the log of a quotient 1s the difference between the logs
of the numerator and denominator, we get:

flz;p) = exp [mlﬂ (%) +In(1 —p}}



Is the p.m.f now in exponential form? So close! Let's just add 0 in (by way of the natural log of 1) to make 1t
obvious. Doing so, we get:

flaip) = eap |aln (12— +1a(1) + a1 - p)

P | 41n(1) + In(1- p)
1-p

Yes, we have finally written the Bernoulli p.m f in exponential form:
R——

oo

Koe) pcp) i)




Whew! So, we've fully explored writing the Bernoulli p.m f. 1n exponential form! Let's get back to reviewing all of
the p.m f's we've encountered in this lesson. We had Poisson random variables whose p.m f can be wnitten in
exponential form as:

E—J'l.j;'l'

flxr)=

- — -
exp| xInA - In x! &J

A
Kie) p( = jfﬂ"'}

with (1) K(x) and S(x) being functions only of x, (2) p(+) and g(+) being functions only of the parameter 4, and
(3) the support v+ =10, 1, 2. ... not depending on the parameter .. Then, we had N{u, 1) random varnables whose p.d.f.
can be written in exponential form as:



with (1) K(x) and 5(x) bemng functions only of x, (2) p(«) and g{x) being functions only of the parameter 1, and (3)
the support —oo < x < +0o not depending on the parameter ;2. Then, we had exponential random vanables random

variables whose p.d.f. can be written in exponential form as:
1
| +1n(1) - In6

Ke) ©lo) el

f(x:0) = ée""” = eXp{ —X

with (1) K(x) and 5(x) bemng functions only of x, (2) p(f) and ¢(&) bemng functions only of the parameter &, and
(3) the support x = 0 not depending on the parameter &. Happily, it turns out that writing p.d.fs and pm.fsin
exponential form provides us yet a third way of identifying sufficient statistics for our parameters. The following
theorem tells us how.



Exponential Criterion

Exponential Criterion. Let X, 15, ... X} be a random sample from a distribution with a p.d.f. or p.m.f. of
the exponential form:

fla;0) = exp [K(z)p(#) + S(z) + q(0)]

with a support that does not depend on &. Then, the statistic:

Y K(X)

15 sufficient for 4.




Proof. Because X7, 15, ..., .\, 1s a random sample, the jomnt p.d . (or jount pm £ ) of X7, 15, ..., X}, 15, by
independence:

fle, 22, 20;0) = fl21;0) x f22;0)%. .. X f(2n; 0)

Inserting what we know to be the p.m.f. or p.d.f. in exponential form, we get:
flzr,...,zn: 0) = exp [K(z1)p(@) + S(x1) + q(0)] x... xexp [K(z,)p(@) + S(z,) + g(0)]

Collecting like terms in the exponents, we get:

f[mlr-"-s-i:n —E}Lp LR 2 _|_L

which can be factored as:



i uymy )= {exp [p(@ LK(:::,) + ng(0) ] } {exp [L S(x;) ] }

g=1

We have factored the joint p.m.f. or p.d.f. into two functions, one (@) being only a function of the
statisticY = )" K(X;) and the other (/1) not depending on the parameter -

exp ES
K‘3(’\(10, )

——

A

Blu(ZKeen); 6

Therefore, the Factorization Theorem tells us that ¥ = } " | K(X) is a sufficient statistic for &.



Let X7, X5, ..., X}, be a random sample from a geometric f

distribution with parameter p. Find a sufficient statistic for the = =
parameter p.

Solution. The probability mass function of a geometric
random variable 1s:

flz;p)=(1—p)* 'p .
| ot -

forx=1, 2, 3,... The p.m.f can be written in exponential form as:

f(z; p) = exp |zlog(1 — p) + log(1) + log (IL)]

Therefore, Y = Y, X; 1s sufficient for p. Easy as pie!



Examples of Exponential Family of

Distributions

* Exponential families include many of the most common distributions.
Among many others, exponential families includes the following:

Normal Distribution
Exponential Distribution
Gamma Distribution

Chi — Square Distribution
Beta Distribution

Bernoulli Distribution
Poisson Distribution
Geometric Distribution
Binomial Distribution
Etc.



Relative Efficiency

* It usually is possible to obtain more than one unbiased
estimator for the same target parameter 6.

* If 8,and 8,denote two unbiased estimators for the same
parameter 8, we prefer to use the estimator with the smaller
variance.

* That is, if both estimators are unbiased, B,is relatively more
efficient than 8,if V(0,) > V(0).

e In fact, we use the ratio V(8,)/V(6,) to define the relative
efficiency of two unbiased estimators.



Definition

Given two unbiased estimators @. and fi'g of a parameter #, with variances

V(6,) and V(6,). respectively, then the efficiency of g, relative to 6,, denoted
eff (6,, #,), is defined to be the ratio

V(6)
V(6)
If éland ézare unbiased estimators for 6, the efficiency of élrelative to @2,

eff (04,0,),is greater than 1 only if V(8,) > V(8,). In this case, 8, is a better
unbiased estimator than 8; .

eff (8. 6,) =

For example, if eff (64,0,) = 1.8, then V(6,) = (1.8)V(8,), and 6, is
preferred to 6,. Similarly, if eff (él,éz)is less than 1—say, 0.73—then
V(8,) = (0.73)V(0;), and B,is preferred to ;.



Consistency

* A sequence of estimators énthat converges in probability to the
unknown value of the parameter being estimated, asn — oo, is
called a consistent sequence of estimators, i.e., én is consistent if and
only if for every e > 0,

P(|0, — 8| =€) — 0, as mn — 00.

* Here we denote an estimator by 8,,to denote that we used n data
points to form the estimators.



Theorem

* Let 6,, be an unbiased estimator for 6. If Var(8,) — 0,asn — oo,
then 6,,is a consistent estimator for 6.

 Alternatively

An unbiased estimator &, for & 15 a consistent estimator of & 1if

lim V@, =0.

fi— 00



Example

Example: Let X, X5.....X, be the indicators of n Bernoulli trials with success
probability #.

Find a consistent estimator for @.

e We will Theorem 5.2 to find a consistent estimator for ©. Consider

s —_—

gn :Xn-.

Recall that E(0,) = E(X,) IE(X ) = # and Var(f,) = Var(X,,) = 22X — 209

Since #,, is unbiased MSE(#,,) = r(6), .) and as n — oo, Va r(f,,) decreases to 0. Thus
A, is a consistent estimator for H



Example

Example: Let X, X5,.... X, be from a N(u,o?) distribution. Find consistent esti-
mators for ;o and o2,

Solution:

Consider
fln = X, ,

and

X )%

- 1 L
E p— r- —
o= n—1 Z (X;
j=1

 We will use the Theorem to show that the above estimators are consistent.



Recall that E(/i,) = E(X,) = E(X,) = p and Var(jz,) = Var(X,) = Vﬂrﬂxj = ﬂ.
Since fi, is unbiased MSE(p,) = Var(ji,) and as n — oo, Var(ji,) decreases to 0.

Thus ji,, is a consistent estimator for p.

2} — 22 Since s

Recall that we have that E[ 2) = 0% and Var[ =

MSE(s?) = Var(s?) and as n — oo, Var(s?) decreases to [} Thus by Theorem 5.2, s?

is a consistent estimator for o2.

is unbiased



Cisher’s Information and Cramer-Rao
nequality

* The Cramer-Rao Inequality provides us with a lower bound on the
variance of an unbiased estimator for a parameter.
Cramér-Rao Inequality. Lel f(x:#) be a probability density with continuous parameter 8. Let Xy, ..., X, be indepen-

dent random variables with density f(x;8), and let O(X,,...,. Xn) be an unbiased estimator of 8. Assume that f(x;8)
satisfies two conditions:

1. We have

9 ﬁ » . T xi; @
f;n‘_ﬂ [/”./{hﬂ[n ..... .:'JzJ_]-__[--"-{:r!:H}ff.:"'] - f”.f{a["'l ~~~~ Z,)- Hi::?;g{f Jd"'l""'f-f'n- (2.1)




2. For each @, the variance of G(X {veeos Xp) 18 finite.

Then
1

var(@) > . {(M_ﬂlﬂ

il

where E denotes the expected value with respect to the probability density function f(z

:0).

22



Fisher Information

te .
1(6) := Varg L;—ﬂ log f(X|r?j] — —F, L?ﬁ log f(.3{|f?j]

is the Fisher information.



e \WWe can thus write CRLB as

Theorm A Let X,..., X, beiid. with
density function f(x|@). Let

T =tXq,...,X,)

be an unbiased estimate of #. Then, under
smoothness assumptions on f(x|d).

- 1
—nl(0)

Var(T)



Example 1: Let X be N(6,0?%), where —oo < # < 0co. and ¢ is known. Then

1 | (z—0)°

flz;:0) = 3ETP | 55 }

2o
and

)2
In[f(x:0)] = —%Eﬂ(?ﬂ'ﬂ'g} | ng) :

Differentiating with respect to ¢ we have

oln|f(x;0)] _ T .
00 o?

and

OIn[f(z:0)] -1

06?2 o2

No matter which version of I(f) we use, we see that




o ([oin[f(X;0))
1(0)_]3({ 00 ”

(%[ f(X;0)]
B

1

—_— ‘) =
0'-

Derive the CRLB for this information



Example 2: Let X be binomial b(1, #). Then

f(z:0) = 6°(1 — 6)*

anc
In[f(z;:0)] = zin(8) + (1 — z)in(1 — 0).

dn|f(z:6)] = 1-—=x

ol ¢ 1—40

Pln[f(x;0)] -z 11—z
J6? 8 (1-6)

Derive the CRLB for this information



Now suppose that we have a random sample X7, X, ..., X, from a distribution with
pdf f(z:6). The likelihood function is given by

L(0) = f(z1;0) f(x2;0) - - - f(xn; 6)
and

In[L(0)] = 3 In|f (x: 0)]

which 1mplies that

nlLO)] _ g. Otnlf(r0)
od i=1 o, '

Thus, the natural definition of Fisher information in a sample of size n 18
dln|L(8)]

2
1,(0) = E“ 5 )

Notice that for 2 # 7, cross-product terms in this expectation are 0. By independence,

in[f(Xi: 0)] 9ln[f(X;: 0)
0 o

E




= ()

azn[f X 0)] ] [asn[f(}: 9)]]

It follows that

Theorem A Cramer-Rao Inequality
Let X1,..., X, beiid with density function f(z;#).

Let T'= u(Xy, Xo, ..., X,,) be an estimator of #. We allow that T might be biased,
and denote 1ts expectation by

E[T| = E[u(X. ..., X,)| = k().

It turns out that we can bound Var(T) from below using the Cramer-Rao in-
equality,

[K'(6))°
Var(T) = ()



T = u(Xy, Xy, ..., X,,) is an unbiased estimator of 6, then k(#) = # and £'(f) = 1.
In this case, the Cramer-Rao inequality becomes

Var(T) = n1(0)

Recall from Examples 1 and 2 that ﬁ{ﬂ} equals o2 /n and 6(1 — #)/n, respectively.

Thus, we see that in both cases the sample mean X achieves the Rao-Cramer lower

hound.



Definition Let T be an unbiased estimator of #. The statistic T is called an
efficient estimator of ¢ if and only if the variance of T attains the Cramer-Rao
lower bound.

Definition The ratio of the Rao-Cramer lower bound to the actual variance of an
unbiased estimator of # is called the efficiency of that estimator.

5
k)

with mean @ = (0. We have seen that X is the maximum likelihood estimator of 6.

je—ﬂ
fw:0) ="

1!

Example 3 Let X1, Xs, ..., X,, be a random sample from a Poisson distribution

In[f(x:0)] = xin(f) — 0 — In(z!)

on[f(x:60)]  (z —6)

a0 0
E( An[f(X:0)°) o 6 1
Bl T2 9

We see that the Rao-Cramer lower bound is #/n, which is the variance of X. Hence
X is an efficient estimator of 6.



summary

* Methods of estimation
e 1. MLE

* 2. Method of Moments

* Properties of Estimators
* 1. Unbiasedness

* 2. Sufficiency

* 3. Efficiency

* 4, Consistency



*THANK YOU



Properties of MILE Estimators

 Maximum Likelihood Estimation (MLE) is a widely used statistical
estimation method. In this section, we will study its properties:
efficiency, consistency and asymptotic normality



Efficient Estimator

Definition 1. EFFICIENT ESTIMATOR

o~

An estimator #(y) is efficient if it achieves equality in CRLB.

* That is
i ~y - l
Var (0(Y) ) = —,
1(0)
Example 1.
Question: Y = {Y¥}.Y5,--- .Y, } areiid. Gaussian random variables with distribution N (@, ?). Determine

the maximum likelihood estimator of #. Is the estimator efficient?



Solution: Let y = {y1,y2,--- ,yn} be the observation, then

fy: 0) =] flux: 6)
k=1

- 1 (yx — 0)?
== \/_2 exp —T
k=1 QWJ &

Take the log of both sides of the above equation, we have

202

log f(y; 6) = —5 log(2mo?)

Since log f(y: #) is a quadratic concave function of #, we can obtain the MLE by solving the following
equation.

dlog f(y: 0) _ 235 (y —6) _

00 202 s

Therefore, the MLE is a\u, e(y) = %Zzzl Yk



Now let us check whether the estimator is efficient or not. It is easy to check that the MLE is an unbiased
estimator (E[fyre(y)] = @). To determine the CRLB, we need to calculate the Fisher information of the

model.

Tt
1(6) = [?gz g /v 0)] = (1)
According to Equation 3, we have
Var (E [Y]) s L _2 (5)
MR “10) n ‘
And the variance of the MLE is
r - . 1 - Ij:FE
Var (H_H.ILE[F}) = Var (— Z ﬂ-) = - (6)
T E—1 T

So CRLB equality is achieved, thus the MLE is efficient.




Minimum Variance Unbiased Estimator
(MVUE)

 Minimum Variance Unbiased Estimator (MVUE) is an unbiased
estimator whose variance is lower than any other unbiased estimator

for all possible values of parameter 8. That is

\-"}11‘{§_1f1 vE(Y)) = "»-’zlr'IfHH{l"}]l

for any unbiased #(Y ) of any #.

Proposition 1. UNBIASED AND EFFICIENT ESTIMATORS
If an estimator #(y) is unbiased and efficient, then it must be MVUE.




Consistency of MLE

Definition 2. CONSISTENCY ~

Let {¥1,---,Y,} be a sequence of observations. Let @,, be the estimator using {¥7.---,¥,}. We say that
ol , Al .

#,, is consistent if 8,, — @, i.e.,

P ( gﬂ — 8| > L‘) — 0, as n — 0o (14)

Remark: A sufficient condition to have Equation 14 is that
@&

E l(én — E') _j| — 0, asn — oo.

Proof.

According to Chebyshev’s ineguality, we have

- 2
Since E l(ﬂ,l — Ei') ] — 0, the we have

0<P(|6n—6>¢) <

Therefore., P (|E§” — | = .:‘) — 0, as n = so.




Example 3.
{Y1,Ya, -+, Y, }areiid. Gaussian random variables with distribution N(#,¢?). Is the MLE using {¥7.,Ya,--- ., ¥y}
consistent?

Solution:
From Example 1., we know that the MLE is

Since
2

E [(é‘n - ﬂﬂ — Var (Eﬂ) - % (see Equation 6),

T

— 2 —
so K [(Hﬂ - 9) ] —+ 0. Therefore 8, LA #. i.e. #, is consistent.



Asymptotic Normality of MLE

 READ THIS ONE. (Definition and Proof)



