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OUTLINE

❖POINT ESTIMATION (Properties and methods)

❖INTERVAL ESTIMATION (For one mean, two means, variance, 
proportions)

❖Sample size 

❖Simple linear regression

❖More regression 



Introduction 

• In this section, we'll find good "point estimates" and "confidence 
intervals" for the usual population parameters, including:

• a population mean μ

• the difference in two population means, μ1−μ2, say

• a population variance σ2

• the ratio of two population variances, ൗ𝜎1
2

𝜎2
2, say

• a population proportion p

• the difference in two population proportions, p1−p2, say



• We will work on not only obtaining formulas for the
estimates and intervals, but also on arguing that they are
"good" in some way... unbiased, for example. We'll also
address practical matters, such as how sample size affects
the length of our derived confidence intervals. And, we'll
also work on deriving good point estimates and confidence
intervals for a least squares regression line through a set of
(x,y) data points.



Point Estimation

• In this lesson, we'll learn two methods, namely the method of 
maximum likelihood and the method of moments, for deriving 
formulas for "good" point estimates for population parameters. 

• We'll also learn one way of assessing whether a point estimate is 
"good." We'll do that by defining what a means for an estimate to be 
unbiased. 



Objectives

• To learn how to find a maximum likelihood estimator of a population
parameter.

• To learn how to find a method of moments estimator of a population
parameter.

• To learn how to check to see if an estimator is unbiased for a
particular parameter.

• To understand the steps involved in each of the proofs in the lesson.

• To be able to apply the methods learned in the lesson to new
problems.



Definitions

• Let us denote the n random variables arising from a random sample 
as subscripted uppercase letters:

X1, X2, ..., Xn

• The corresponding observed values of a specific random sample are 
then denoted as subscripted lowercase letters:

x1, x2, ..., xn



Definitions II

Definition. The range of possible values of the parameter θ is called the parameter 

space Ω (the greek letter "omega").

For example, if μ denotes the mean grade point average of all college students, then 

the parameter space (assuming a 4-point grading scale) is:

Ω = {μ: 0 ≤ μ ≤ 4}

And, if p denotes the proportion of students who smoke cigarettes, then the parameter 

space is:

Ω = {p: 0 ≤ p ≤ 1}



Definitions III
Definition. The function of X1, X2, ..., Xn, that is, the statistic u(X1, X2, ..., Xn), used 

to estimate θ is called a point estimator of θ.



Definitions IV
Definition. The function u(x1, x2, ..., xn) computed from a set of data 

is an observed point estimate of θ.



Maximum Likelihood Estimation



NOTE



• This definition of the terms 

• (1) likelihood function, 

• (2) maximum likelihood estimators, and 

• (3) maximum likelihood estimates.

• So HOW DOES IT WORK?



EXAMPLES



Solution



•Now, in order to implement the method of maximum
likelihood, we need to find the p that maximizes the
likelihood L(p). We need to put on our calculus hats
now, since in order to maximize the function, we are
going to need to differentiate the likelihood function
with respect to p. In doing so, we'll use a "trick" that
often makes the differentiation a bit easier. Note
that the natural logarithm is an increasing function
of x:











Example II
• Suppose the weights of randomly selected American female

college students are normally distributed with unknown
mean μ and standard deviation σ. A random sample of 10
American female college students yielded the following
weights (in pounds):

115 122 130 127 149 160 152 138 149 180

• Based on the definitions given above, identify the likelihood
function and the maximum likelihood estimator of μ, the
mean weight of all American female college students. Using
the given sample, find a maximum likelihood estimate of μ as
well.







Example III

•Let X1, X2,..., Xn be a random sample from a
normal distribution with unknown mean μ and
variance σ2. Find maximum likelihood
estimators of mean μ and variance σ2.











•Note that the maximum likelihood estimator
of σ2 for the normal model is not the sample
variance S2. They are, in fact, competing
estimators. So how do we know which
estimator we should use for σ2 ? Well, one way is
to choose the estimator that is "unbiased." Let's
go learn about unbiased estimators now.



Unbiased Estimation

• In MLE, we showed that if Xi are Bernoulli random variables with 
parameter p, then:



All Things 
Together



Example





EXAMPLE II











EXAMPLE III







• In summary, we have shown that, if Xi is a normally
distributed random variable with mean μ and variance σ2,
then S2 is an unbiased estimator of σ2. It turns out, however,
that S2 is always an unbiased estimator of σ2, that is,
for any model, not just the normal model. (Show that as a
homework.) And, although S2 is always an unbiased
estimator of σ2, S is not an unbiased estimator of σ. (Show
that as a homework, too.)



Another Example



Definition



Proof of MSE(෡𝜽) = 𝑽𝒂𝒓 ෡𝜽 + [𝑩(෡𝜽)]𝟐

RECALL, 𝑩 ෡𝜽 = 𝑬 ෡𝜽 − 𝜽





EXAMPLE



Solution





Conclusion on MLE and Unbiasedness

• Sometimes it is impossible to find maximum likelihood
estimators in a convenient closed form. Instead, numerical
methods must be used to maximize the likelihood function.

• In such cases, we might consider using an alternative
method of finding estimators, such as the "method of
moments." Let's go take a look at that method now.



Method of Moments

• In short, the method of moments involves equating sample moments 
with theoretical moments. 

• So, let's start by making sure we recall the definitions of theoretical 
moments, as well as learn the definitions of sample moments.





One Form of the Method

• The basic idea behind this form of the method is to:



• The resulting values are called method of moments
estimators. It seems reasonable that this method would
provide good estimates, since the empirical distribution
converges in some sense to the probability distribution.

• Therefore, the corresponding moments should be about
equal.

• In some cases, rather than using the sample moments about
the origin, it is easier to use the sample moments about the
mean. Doing so, provides us with an alternative form of the
method of moments.



Another Form of the Method

• The basic idea behind this form of the method is to:



EXAMPLE









The Gamma distribution



Definition





Beta Distribution

• Definition











• Assignment: 

• Derive the mean and variance of Gamma Distribution by Integration

• Show how Chi-Square and Exponential Distributions are derived from Gamma 
Distribution. Determine their respective means and variances



OTHER PROPERTIES OF ESTIMATORS

• We have so far looked at UNBIASEDNESS

• Others Include

1. Sufficiency 

2. Efficiency 

3. Consistency 



Sufficient Statistics

Objectives

In this Section, our goals are:

• To learn a formal definition of sufficiency.

• To learn how to apply the Factorization Theorem to identify a
sufficient statistic.

• To learn how to apply the Exponential Criterion to identify a
sufficient statistic.

• To extend the definition of sufficiency for one parameter to two (or
more) parameters.



Definition of Sufficiency



Factorization Theorem
• While the definition of sufficiency provided on the previous page

may make sense intuitively, it is not always all that easy to find the
conditional distribution of X1, X2, ..., Xn given Y.

• Not to mention that we'd have to find the conditional distribution of
X1, X2, ..., Xn given Y for every Y that we'd want to consider a
possible sufficient statistic!

• Therefore, using the formal definition of sufficiency as a way of
identifying a sufficient statistic for a parameter 𝜃 can often be a
daunting road to follow. Thankfully, a theorem often referred to as
the Factorization Theorem provides an easier alternative





Example







Example II







Example





Exponential Form















Exponential Criterion









Examples of Exponential Family of 
Distributions
• Exponential families include many of the most common distributions. 

Among many others, exponential families includes the following:

Normal Distribution
Exponential Distribution
Gamma Distribution
Chi – Square Distribution
Beta Distribution

Bernoulli Distribution
Poisson Distribution
Geometric Distribution
Binomial Distribution
Etc.



Relative Efficiency

• It usually is possible to obtain more than one unbiased
estimator for the same target parameter 𝜃.

• If ෠𝜃1and ෠𝜃2denote two unbiased estimators for the same
parameter 𝜃, we prefer to use the estimator with the smaller
variance.

• That is, if both estimators are unbiased, ෠𝜃1is relatively more
efficient than ෠𝜃2if V( ෠𝜃2) >V( ෠𝜃1).

• In fact, we use the ratio V( ෠𝜃2)/V( ෠𝜃1) to define the relative
efficiency of two unbiased estimators.



Definition 

If ෠𝜃1and ෠𝜃2are unbiased estimators for 𝜃, the efficiency of ෠𝜃1relative to ෠𝜃2,
𝑒𝑓𝑓 ( ෠𝜃1, ෠𝜃2), is greater than 1 only if V( ෠𝜃2) > V( ෠𝜃1). In this case, ෠𝜃1 is a better

unbiased estimator than ෠𝜃1.

For example, if 𝑒𝑓𝑓 ( ෠𝜃1, ෠𝜃2) = 1.8, then 𝑉( ෠𝜃2) = (1.8)𝑉( ෠𝜃1), and ෠𝜃1 is

preferred to ෠𝜃2 . Similarly, if 𝑒𝑓𝑓 ෠𝜃1, ෠𝜃2 is less than 1—say, 0.73—then

𝑉 ෠𝜃2 = 0.73 𝑉 ෠𝜃1 , and ෠𝜃2is preferred to ෠𝜃1.



Consistency 

• A sequence of estimators መ𝜃𝑛that converges in probability to the 
unknown value of the parameter being estimated, as 𝑛 → ∞, is 
called a consistent sequence of estimators, i.e., መ𝜃𝑛 is consistent if and 
only if for every 𝜖 > 0,

• Here we denote an estimator by መ𝜃𝑛to denote that we used n data 
points to form the estimators.



Theorem 

• Let መ𝜃𝑛 be an unbiased estimator for 𝜃. If 𝑉𝑎𝑟( መ𝜃𝑛) → 0, as 𝑛 → ∞, 
then መ𝜃𝑛is a consistent estimator for 𝜃.

• Alternatively



Example

• We will Theorem 5.2 to find a consistent estimator for θ. Consider



Example

• We will use the Theorem to show that the above estimators are consistent.





Fisher’s Information and  Cramer-Rao 
Inequality
• The Cramer-Rao Inequality provides us with a lower bound on the 

variance of an unbiased estimator for a parameter.





Fisher Information

is the Fisher information.



• We can thus write CRLB as





Derive  the CRLB for this information



Derive  the CRLB for this information











Summary
• Methods of estimation

• 1. MLE

• 2. Method of Moments

• Properties of Estimators

• 1. Unbiasedness

• 2. Sufficiency

• 3. Efficiency

• 4. Consistency 



•THANK YOU



Properties of MLE Estimators

• Maximum Likelihood Estimation (MLE) is a widely used statistical 
estimation method. In this section, we will study its properties: 
efficiency, consistency and asymptotic normality



Efficient Estimator

• That is 







Minimum Variance Unbiased Estimator 
(MVUE) 
• Minimum Variance Unbiased Estimator (MVUE) is an unbiased 

estimator whose variance is lower than any other unbiased estimator 
for all possible values of parameter 𝜃. That is 



Consistency of MLE 





Asymptotic Normality of MLE 

• READ THIS ONE. (Definition and Proof)


