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Unit 1 

Introduction to Statistical Methods 

1.1 Introductions  

 
Formal definition of Statistics and Key statistical concepts 

The word statistics have been derived from the Latin word status or the 

Italian word "statista". Both the word means a political state. The word 
statistic is also found used by Shakespeare and Milton in the same of states 

men i.e. a person well versed in the affairs of the state. Its originally meant 

information useful to the state. 
 

Statistics is a mathematical science involving the collection, interpretation, 
analysis, and presentation of data. It is often used to make predictions 

based on data. It is widely applicable in various social and natural sciences 
as such as political science and medicine as well as in business such as the 

insurance industry. 
 

Statistics are very important in various aspects of business; a terrific 
example is the insurance industry. It is the job of an actuarial scientist to 

determine how long people will live (statistically), how likely they are to 
have an accident, and how likely is it their home will burn down or be 

damaged in a hurricane? These risks are all rated based solely on statistical 
data and policies are priced accordingly. Anonymous  

 

Statistics refers to the numerical information from which valid conclusions 
can be drawn on the basis of some analysis  



 

Statistics are quantifies computed or derived from a sample for example 
sample mean, standard deviation etc. 

 
Statistics is the method of collecting, organizing, presenting, analyzing, 

interpreting and disseminating numerical information.  
 Collection of Data is the process of obtaining measurements or counts 

or observations. 
 Organization of Data is the task of presenting the collected data in a 

form suitable for deriving logical conclusions. 
 Analysis of Data is the process of extracting from the given 

measurements, counts or observations relevant information from which a 
summarized and comprehensive numerical description can be formulated. 

The most important measures used for this purpose are the mean, 
median, range and standard deviation. 

 Interpretation of Data is the task of drawing logical conclusions from 

the analysis of the data and usually involves the formulation of 
predictions concerning a large collection of objects from information 

available for a small collection of similar objects. 

1.2 Types of statistics 

Statistics can be broken down into two broad component parts 
 

Statistics 

 

 

 

 

 

 

 

 

 

 

 Descriptive statistics; these are procedures used to organize and 

summarize masses of numerical information e.g. mean, mode, 
median, range etc. 

 
 Inferential/Inductive statistics; these are methods used to draw 

conclusions about a population based on sample results. E.g. 
Comparisons and tests of hypotheses.  

1.3 Applications of Statistics  

  

Descriptive 

Statistics  Inferential/Inductive 

statistics 



The examples below illustrate some of the uses of statistics for business and 

economics. 
 

Accounting 
Public accounting firms use statistical sampling procedures when conducting 

audits for their clients.  For instance, suppose an accounting firm wants to 
determine whether or not the amounts of accounts receivable shown on the 

client's balance sheet fairly represents the actual amounts of accounts 
receivable.  Usually the number of individual accounts receivable is so large 

that reviewing and validating every account would be too time -consuming 
and expensive.  In such situations, it is common practice for the audit staff 

to select a subset of the accounts called a sample.  After reviewing the 
accuracy of the sample accounts, the auditors draw a conclusion as to 

whether or not the accounts  receivable amount shown on the client's 
balance sheet is acceptable. 

 

Finance 
Financial advisors use a variety of statistical information to guide their 

investment recommendations.  In the case of stocks, the advisers review a 
variety of financial data including price-earnings ratios and dividend yields.  

By comparing the information for an individual stock with information about 
the stock averages, a financial advisor can begin to draw a conclusion as to 

whether an individual stock is over- or undervalued. 
 

Marketing 
Electronic scanners at retail checkout counters are being used to date for a 

variety of marketing research applications.  For example, data suppliers 
purchase point-of-sale scanner data from grocery stores, process the data, 

and sell the statistical summaries of the data to manufacturers.  
Manufacturers also purchase data and statistical summaries on promotional 

activities such as special pricing and the use of in-store displays.  Product 

brand managers can review the scanner statistics and the promotional 
activity  statistics to gain a better understanding of the relationship between 

promotional activities and sales.  Such analyses are helpful in establishing 
future marketing strategies for the various products. 

 
Production 

With today's emphasis on quality, quality control is an important application 
of statistics in production.  A variety of statistical quality control charts are 

used to monitor the output of a production process.  In particular, an x-bar 
chart is used to monitor the average output.  Suppose, for example, that a 

machine is being used to fill  containers with 500 cm3 of a well-known soft 
drink.  Periodically, a sample of containers is selected and the average 

contents of the sample containers determined.  This average or x-bar value, 



is plotted on the x-bar chart.  A plotted value above the chart's upper control 

limit indicates overfilling and a plotted value below the chart's lower  control 
limit,  indicates under filling.  Thus, the x-bar chart shows when adjustments 

are necessary to correct the production process.  The process is termed " in 
control" and allowed to continue as long as the plotted x-bar values are 

between the chart's upper and lower control limits. 
 

Economics 
Economists are frequently asked to provide forecast about the future of the 

economy or some aspect of it.  They use a variety of statistical information 
in making such forecasts.  For example in forecasting inflation rates, 

economists use statistical information on such indicators as the Producer 
Price Index (PPI), Consumer Price Index (CPI), the unemployment rate, and 

the manufacturing capacity utilization.  Often, statistical indicators are 
entered into computerized forecasting models that predict inflation rates. 

 

1.4 Roles of Statistic 

 

 Quality control, establishments normally set up acceptable quality 
limits. Management makes decisions on the quality of current 

production on the basis of these limits.  
 

 Market research, the marketing department has the responsibility of 
making recommendations regarding the profitability of a new product 

or business location. The department therefore has to conduct 
consumer tests and make profit projections based on sample results.  

 
 Planning; numerical information collected over a period of time 

normally shows some trend. On the basis of this trend a forecast or 
prediction can be made and this helps in planning future activities of 

the business e.g. sales during x-mas.  

 
 Human activity, Statistics has come to play an important role in almost 

every field of life and human activity. There is hardly any field where 
statistical data or statistical methods are used for one purpose or the 

other our arrival in this world and departure from here are recorded as 
statistical data somewhere and in same form. 

 
 Decision making, Statistics plays an important role in business, 

because it provides the quantitative basis for arriving at decisions in all 
matters. All types of banks make use of statistics for a number of 

purposes. Statistics has proved to be of immense use in physics and 



chemistry. It has given a new understanding to the essential qualities 

of the laws of nature. 
 

 Statistics plays an important in psychology and education. In 
experimental psychology, whenever a problem has to be studied, it 

has to be based on a sample. Statistical methods are also used in 
analyzing the experimental data and drawing conclusions there from. 

1.5 Limitations of Statistics 

 Statistics with all its wide application its limitations are as given below; 

 Statistics is not suitable to the study of qualitative phenomenon: Since 
statistics is basically a science and deals with a set of numerical data, 

it is applicable to the study of only these subjects of enquiry, which 
can be expressed in terms of quantitative measurements. As a matter 

of fact, qualitative phenomenon like honesty, poverty, beauty, 
intelligence etc, cannot be expressed numerically and any statistical 

analysis cannot be directly applied on these qualitative phenomenons. 
Nevertheless, statistical techniques may be applied indirectly by first 

reducing the qualitative expressions to accurate quantitative terms. 

For example, the intelligence of a group of students can be studied on 
the basis of their marks in a particular examination. 

 
 Statistics does not study individuals: Statistics does not give any 

specific importance to the individual items; in fact it deals with an 
aggregate of objects. Individual items, when they are taken 

individually do not constitute any statistical data and do not serve any 
purpose for any statistical enquiry.  
 

 Statistical laws are not exact: It is well known that mathematical and 

physical sciences are exact. But statistical laws are not exact and 
statistical laws are only approximations. Statistical conclusions are not 

universally true. They are true only on an average. 
 

 Statistics table may be misused: Statistics must be used only by 

experts; otherwise, statistical methods are the most dangerous tools 
on the hands of the inexpert. The use of statistical tools by the 

inexperienced and untraced persons might lead to wrong conclusions. 

Statistics can be easily misused by quoting wrong figures of data. 
 

  Statistics is only, one of the methods of studying a problem: 

Statistical methods do not provide complete solution of the problems 



because problems are to be studied taking the  

background of the countries culture, philosophy or religion into 
consideration. 

 
 

 
 

 
 

1.6 Classification of Variables  

A variable is a characteristic that can assume different values and 

outcomes e.g. age, height, weight.  
 

A characteristic that assumes the same valve under all circumstances is 
referred to as a constant e.g. pie, location, address, name etc.  

 

Types of variables  
 

Continuous variable, this variable assumes all numerical values of an 

interval or different intervals e.g. distance, time, height etc i.e. include 

decimal values e.g. 3.5 km 

 

Discrete variable; this is limited to certain whole values e.g. number of 

people (20 or 21 but not 20.5) 

 

1.7 Classification of Data  

There are two classifications of data which include the following; 

Quantitative data; a quantitative data is one which can be assigned a 

particular numerical value e.g. number of items, age, sale, height etc.  

Qualitative Data, this is the data which can be identified or described but 

cannot be measured numerically e.g. colour, character, sex etc. 

1.8 Sources of Data 

 



Primary data; this is data which is collected and published by the same 

organization. It is original data that has been collected and published for the 

first time e.g. population census.  

Secondary data; this is an extraction from an already existing source e.g. 

from books, magazines, newspapers etc. 

Merits of primary data  

 It is original and often includes definition of terms and units used  

 Primary data is more detailed while secondary data omits part of the 

information  

 Primary data includes the procedure of selecting the sample and 

collecting the data  

 It is free from errors of transcription  

 

Merits of secondary data  

 It is easy to collect 

 It is cheap in terms of money and manpower 

 A lot of time is saved  

 It convenient when reliable information is available.  

 

1.9 Data Collection  
 

Data are the facts and figures that are collected, analyzed, and summarized 
for presentation and interpretation.  Together, the data collected in a 

particular study are referred to as a data set for that study. 
 

1.9.1 Methods of Data Collection 

 

1. A) Interview (personal) 

Is an enumerator visits the respondent, asks the necessary questions and 

records the answers on a designed form 

Advantages 

 The right respondent is contacted  



 Clarity can be made where necessary  

 Non response is avoided 

 

Disadvantages 

 It is expensive in terms of staff salaries, transport, allowances and 

training cots  

 Some respondents may not give accurate information in the presence 

of an interviewer especially on sensitive issues like educational 

standards, age, number of children etc 

 Interviewer bias; the interviewer may influence the way the questions 

re answered by introducing his or her own ideas and ask questions 

that are not included in the schedule.  

 

Qualities of interviewers  

The interviewer needs long training since data collection involves probing 

hidden factors. The interviewer should possess the following desirable 

characteristics;  

 Tact; she or he should be calm and avoid flattering and antagonizing 

respondents as this may lead to excitement or fear  

 Accuracy; the interviewer should stick to the list of respondents; 

answers should be recorded accurately and any arithmetic calculations 

should also be done accurately and crosschecked.  

 Amiability; the interviewer should be pleasant and sociable and should 

avoid investigating private lives and habits 

 Neutrality; the interviewer should not segregate on matters of colour, 

sex, tribe, religion, politics etc as this will introduce bias. 

 

b) Telephone Inquiry  

In this method the interviews are conducted by telephone  



Advantage  

 It is a cheap method of collecting information  

 

Disadvantage  

 Not many people can be reached by telephone  

 Information requiring documents cannot be obtained by telephone  

 

2. Questionnaires 

A questionnaire is a set of questions printed with blank/opinions space for 

answers and/ or pre –coded answers. In a mail questionnaire the question 

are printed and posted to the respondent to be answered at his/her own 

convenience.  

 

Advantages 

 The method is cheaper than interviews because only stamps are 

required. 

 Large samples can be covered and the results are therefore more 

reliable  

 

Disadvantages  

 Wrong respondents may be contacted  

 Explanations/clarifications cannot be made when required  

 Some respondents take their own time to respond thus delaying the 

compilation and analysis of the information  

 The method has the problem of non response unless there is incentive 

or legal obligation  

 

Characteristic of a good questionnaire 

 The questionnaire should be short  



 The questions should be clear and simple  

 The questions should not be ambiguous i.e. Every question should 

have a definite interpretation  

 The questions should not require difficult calculations  

 Unnecessary/irrelevant questions should be left out  

 Instructions and definitions should be concise with terms and units 

clearly spelt out  

 Leading questions should be avoided  

 A question should naturally lead to the next, i.e. they should follow a 

logical order.  

3. Direct Observation  

This method involves examining, counting and measurements using physical 

means. 

 

Advantages  

 The method is more accurate compared to personal interviewer and 

mail questionnaire  

 The respondent is not given the chance to give wrong information 

using pretence because the interviewer has to physically observe the 

events as they occur.  

Disadvantages  

 It is expensive in terms of money manpower and equipment  

 It is time consuming  

 Certain types of information cannot be (clearly) observed directly e.g. 

income, expenditure etc. 

4. Registration  

In this method the information is reported t the relevant authority when or 

shortly after the event has occurred. E.g. death, marriage, birth, accident, 

migration etc.  



 

 

 

1.10 Designing a Statistical Study 

Sometimes data are not readily available from existing sources.  If the data 

are considered necessary a statistical study can be conducted to obtain 
them.  Such statistical studies can be classified as experimental or 

observational. 

 
 In an experimental study, the variables of interest are first identified.  

Then one or more factors in the study are controlled so that the data can 
be obtained about how the factors influence the variables. 

 
For example, a pharmaceutical firm might be interested in conducting 

an experiment to learn about how a new drug affects blood pressure.  
The new drug is the factor that influences the blood pressure.  To 

obtain data about the effect of the new drug, a sample of individuals 
will be selected.  The dosage level of the new drug will be controlled 

with different groups of individuals being given different dosage levels.  
Data on blood pressure will be collected for each group.  Statistical 

analysis of the experimental data will help determine how the new 
drug affects blood pressure. 

 

 In non-experimental, or observation statistical studies no attempt 
is made to control or influence the variables of interest.  A survey is the 

most common type of observational study. 
 

In a personal interview survey, research questions are first identified.  
The questionnaire is designed and administered to a sample of 

individuals.  Data are obtained about the research variables, but no 
attempt is made to control the factors that influence the variables. 

Summary 

 

This unit has presented statistics as a scientific investigative and research 
technique.  A number of applications of statistics have been presented in 

order to emphasis the importance of statistics.  The unit has also looked at 
sources of data, methods of collecting data and the different sampling 

techniques.  These methods will be looked at in more detail in our next 

units. 
 



It is therefore important that researchers and decision makers know the 

different statistical techniques of collecting and analyzing data if they are to 
make logical inferences about the collected data. 

 

 Review Questions 

1. Describe the uses of statistics and limitations of statistics. 

2. Discuss the methods of data collection with 3 advantages and 

 disadvantages of each  

3. Explain the role of statistics in business  

4. What factors are put into consideration when choosing the source of 

 date to use?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit 2 

Populations and Samples  
2.1 Introduction  

 
A population/ universe; is the totality of all the items or things under 

consideration. It is a set of all the elements on which information is desired.  
Parameter; is a quantitative measure that describes a characteristic of a 

population  
A sample is the portion of the population that has been selected for 

analysis. 
 

Statistic; is a quantitative measure that describes a characteristic of a 
sample. 

 
A sampling frame is list of all the items in the population or some means of 

identifying a particular item in the population. The frame must be complete 

i.e. no item in the population should be left out.  
 

The Census of population  
The census of population as defined by the U.N is the total process of 

compiling and publishing demographic, economic and social data at a 
specified time relating to all the people in a country or an area.  

 
Time of census  

A population census is suitable when there is less population movement. It 
should be outside the normal holiday periods such as –mas, Easter and other 

festivals. 
 

Basis of conducting census  
There two broad basis  

DEJURE; on this basis a person is counted in the place where she or he 

normally lives  
DEFACTO; a person is counted in the place where she or he spends the 

census night  
 

Usual errors in population census  
Age; a great number of women state their age under 30 

Education and occupation are normally overstated  
Marital status; divorced women often call themselves widows 

Fertility is usually understated.  
 

Reasons for sampling  
Cost; the expenses involved in data collection and analysis are smaller than 

for attempting a complete or nearly complete coverage  



Time; less time is taken to collect and analyze the data and information 

may be required urgently  
Scope; highly trained personnel and specialized equipments can be used 

thus providing a more detailed analysis  
Accuracy; high quality personnel can be given intensive training and ore 

careful supervision of fieldwork and therefore produce more accurate results.  

2.2 Sampling Methods 

There are many ways to collect a sample. The most commonly used 
methods are: 

 Simple Random Sampling 
The sample is drawn unit by unit and each item in the population has 

an equal chance of being included in the sample e.g. gold fish bowl  
 Systematic Sampling  

The first item is selected at random from the first k items and 
thereafter every kx Item is included in the sample where k is the 

sampling frame given by  

 
K =   N 

 n 
 

Advantages  
o Easy to draw 

o The sample is spread more evenly over the population 
 

 
 Cluster sampling  

This is often referred to as area sampling because it is frequently used 
on a geographical basis. The area of interest is divided into smaller 

units e.g. city blocks. A simple random sample of the blocks is then 
selected and every item in the selected blocks is included in the 

sample.  

 
 Stratified sampling  

The population is subdivided into non overlapping homogeneous 
subpopulations called strata. A simple random sample is then taken 

separately from each stratum. Stratification is applied when the 
population is heterogeneous and the heterogeneity has a bearing on 

the characteristic being studied e.g. fertility 
 

 Quota sampling  
In this method the interviewer is given the names and addresses of 

the people (items) to be included or a fixed number form each 
category of items.  



 

Advantages  
o Speed 

o Reduced cost 
 

Disadvantages  
 

o Risk of bias; the interviewer may discriminate against certain 
types of people.  

 
 Multistage sampling  

This involves drawing a series of random samples at successive 
stages; it is commonly used when the population is widely scattered 

e.g. we can start by sampling the regions in Uganda (stage 1). 
 

 

 Review Questions 

1. Give and discuss the main characteristics of the following types  of 

 sampling techniques: 
 (i) Simple random sampling 

 (ii) Systematic sampling 
 (iii)  Stratified sampling 

(iv) Cluster sampling 
 

2. Describe the main uses of sampling in business 
 

3. Explain what is meant by the following terms:  

(i) Population 
(ii)  Sample 

(iii)  Parameter 
(iv)    Statistic     

 
 

 

 
 

 
 

 

 

 

 

 



Unit 3 

Data Presentation and Analysis  
 
3.1 Introduction  

 
Data organization, editing and presentation are essential tasks which must 

be carried out before the planning and decisions making processes.  
Data organization helps to summaries a huge mass of data in a clear and 

orderly manner. 

Data editing is necessary to identify outliers and possible errors in data 
collection and coding.  

Data presentation helps to lay them out in an orderly manner in order to 
reveal the underlying patterns or salient features in the data set.  

Data may be presented in form of tables, graphs/charts and pictures.  
 

 
3.2 The tables, bar chart, Line (Time series) graph, and Pie-chart 

 

 A table is a systematic arrangement of data in a two dimensional layout in 

form of rows and columns. The columns are horizontal arrangements while 
the rows are vertical arrangements.  

Tabulation is the process of condensing data in the form of a table.  
 

Major reasons for tabulation  
 The data can be more easily comprehended 

 Comparisons can be made easily  
 

Types of tables  
 

Informative/classifying table  
These are original tables with data systematically arranged for record 

purposes.  

They are frequently referred to as schedules and present data relating to a 
given phenomenon. E.g. logarithm table, table of square root, area under 

the normal curve, sin, cos etc.  
 

General/reference tables  
These originate from the informative tables and contain highly summaries 

information. They are normally given as appendix. E.g. financial tables for 
1%, 5%, 10% etc 

 
 

 



Text/summary tables  

Summary tables are derived tables which contain only the data required for 
analysis. These tables are interpretive and highlight significant observations 

relating to a phenomenon. They often include ratios, percentages, totals, 
averages and other derived measures and are found in the body of the text.  

e.g class composition by gender  
 

Class  Male  female Total  

BBA I 24 12 36 

BBA II 16 20 36 

Total  40 32 72 

% 55.6 44.4 100 

 

Frequency distribution tables  
Frequency distribution tables give the number of items of varying sizes or 

magnitudes. These tables categories data according to specific 

characteristics or magnitudes.  
While qualitative frequency distribution tables group data on the basis of the 

nature or characteristic of the data, quantitative frequency distribution 
tables show classes of data categorized according to numerical size 

 
Frequency distribution table  

Distances (KM) recorded by 120 sales executives in a week  
 

Distance      
  

frequency (number of 
executives) 

 

400-420 12 

421-441 27 

442-462 34 

463-483 24 

484-504 15 

505-525 08 

 
Time series tables  

These tables show the magnitude of a variable over a specifc perid of time. 

E.g value of exports (mil shs) 
 

Year  Value  

2000 15 

2001 17 

2002 10 

 



Classification of tables  

Tabulation involves the use of rows and columns to illustrate relationships 
between data for comparison purposes. Tables can be broadly classified into 

2 categories; 
 

 Simple table  
A simple table presents the characteristics of a single item and shows only 

one relationship. 
 

Name  Age  

Jane  20 

John  22 

James  19 

 
 Complex tables  

Complex tables present the characteristics of more than one group of items 

set up in additional columns and rows  

 20-40  

Married  

 

Unmarried  

Age 41+ 

Married  

 

Unmarried  

Male      

Smoker  31 28 41 20 

Nonsmoker  30 42 27 18 

Female      

Smoker  38 37 49 43 

Nonsmoker  32 29 31 39 

 

Major parts of a table  

 Title; this is a brief statement, which appears at the top of the table 

and explains what type of information is contained in the table. A 

good title should be compact but complete.  

 Head not; this is a statement below the title, which clarifies the 

content of the table or main parts of the table. E.g. units used such as 

figures in tones, million shs etc.  



 Stub (rows) and captions (columns); the stub consists of the stub 

head and stub entries. The stub head describes the stub entries and 

each stub entry 1 tables the data found in this row of the table.  

 The caption labels the data found in the columns of the table. It 

consists of one or more column heads.  

 The body; the body contains the actual numerical information  

 Footnote; this is a phrase or statement which clarifies some specific 

parts of the table. The asterisk symbol is normally used in the body of 

the table  

 Source note; this states clearly where the data was obtained. This si 

necessary for the reader t cross check the figures and possibly gather 

additional information.  

Format of a table 

Title  

 

Head note  

Stub head Caption 

Column head            Column head  

 Stub 

Entries 

 

Body 

 

Footnote  

 

Source note  

 

Guidelines for constructing tables  

 The table should be as simple as possible  

 The table should have a comprehensive explanatory title placed at the 

top and centered  



 Abbreviations should be avoided especially in tittles and headings  

 A dash, rather than a zero, should be used to indicate that information 

is not available  

 If a figure is repeated it should be shown each time. Ditto marks (―) 

must be avoided. 

 Symbols, especially the asterisk (*), should be used for footnotes  

 The source must be stated  

 Totals should be shown where appropriate.  

 

Graphs  

A graph is a representation of data by a continuous curve. The vertical 

height of the curve measures one variable while the horizontal measures 

another so that the measurements are significant in both directions  

 

Advantages of graphs compared to table s 

 A graph can make a stronger visual impact  

 It does not require and special training to assimilate information on 

graphs 

 

Limitations of graphs  

 A graph cannot show many sets of facts like complex table. They are 

limited to mainly two variables.  

 Exact values are not easily shown on a graph  

 The construction requires certain amount of time  

Principles of graph construction  

 A graph must have a clear and comprehensive title  

 The scale should be chosen such that the presentation ensures that 

the correct impression is given  

 The independent variable should always be placed on the horizontal 

axis  



 The vertical scale should always start from zero. If this is not possible 

the scale may be such that the zero is shown at the bottom of the 

scale and definite break in the scale is shown.  

 The horizontal scale need not start from zero 

 The axes should be clearly labeled. This should include both the 

variable and the units used.  

 Curves must be distinct. If two or more curves are drawn on the same 

graph different colours can be used to distinguish them to avoid curves 

being confused  

 The graph must not be overcrowded with curves. This makes it difficult 

to see the pattern formed by any one curve and the major reason for 

graphical presentation is not achieved. 

 The source of the data must always be given.  

Types of graph 

Arithmetic line graph 

Both the vertical and the horizontal axes have arithmetic scales. The scales 

consist of consecutive units equally spaced.  

 

Semi log graph 

A semi log graph is a graph, which has one axis (the horizontal) 

arithmetically scaled and one axis (the vertical having logarithmic scales. 

The latter means that instead of the consecutive units the logarithms of the 

units are plotted. A semi log graph shows the rate of change of a variable. 

E.g percentage increase.  

 

Features of a semi log graph 

 The slope of the curve shows the rate at which the figures are 

changing. (Increasing or decreasing) 

 If the curve is a straight line the rate of change is constant  



Geometric forms  

Bar chart  

These are diagrams in which figures are represented by the length of 

rectangles called bars  

 Simple bar chart  

This is a graph that consists of a number of bars arranged vertically or 

horizontally whose heights or lengths vary with the magnitude of the 

figures represented but which are of equal width.  

The simple bar charts are used where change in totals only are required.  

Year  Products  

1990 28 

1991 20 

1992 40 

1993 45 

 

Simple bar chart  

 

Value (mil shs) 

 

      60 

     

      40 

     

      20 

 

        0 

  1990     1991 1992  1993 

 

 Year  

 



 Component bar charts  

These are ordinary bar charts subdivided into component parts. The 

individual component lengths and the overall length f the bars however 

represent actual figures. 

Component bar chars are used where changes in total and an indicating the 

size of each component figure are required. 

 

 

 Multiple bar charts  

0

5

10

15

20

25

30

35

40

1990 1991 1992 1993

Tobacco

Coffee

Cotton

 

 

3.3 Frequency distribution 
 

 

 

3.4 Graph Presentation of frequency (histogram, frequency 

 polygon and Ogive) 

 

Determining the Mode from the Histogram 
 

For grouped data, the mode can as well be obtained from the histogram 
using the tallest bar (rectangle). 

 
After determining Lo,  c, d1 and d2, from the Histogram,  the mode is 

computed using the following formula: 

 
Mode(Mo) 



  Mo = Lo + c 
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  where Lo = lower boundary of the modal class 
    c = class length/width of the modal class   

Example 4.5 
The following table shows the weights of 100 students measured to the 

nearest kg. 
 

 Weight(kg) Number of children 
 10-14  5 

 15-19  9 
 20-24  12 

 25-29  18 

 30-34  25 
 35-39  15 

 40-44  10 
 45-49  6 

 
 

Determining the Median From The O-Give 
 

For grouped data, the median can as well be obtained from the plot of the 
greater-than and less-than O-give diagram.  It occurs at the point of 

intersection. 

 
Example 4.6 

The table below gives the frequency of tail length of rats in a biology 
laboratory. 

  Length(cm)  Frequency 
   1-5   15  

   6-10   24  

   11-15  23  

   16-20  10 

   21-25  10 
   26-30  5 

   31-35  1 
   36-40  1 

 
Draw a greater-than O-give and a less-than O-give and determine the 

median  
 

 



 Review Questions 

1. The managing director (MD) of a bus company requires information 
about the distribution of the passengers for a managerial decision 

making regarding whether or not to purchase more   bus. The data 
collected for the last 50 days of the business is shown in the table 

below: 
 

Passengers 20-24 25-29 30-34 35-39 40-44 45-49 50-54 

Days (f) 12 24 30 18 11 5 1 

 
a) Draw a greater – than O-give and determine the first and third 

quartiles from it. 
b) Determine the 25th, 50th and 75th percentile from the O-give 

 
 

 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 



Unit 4 

Measures of Central Tendency 
4.1 Introduction  
 

We are usually interested in the sample value around which the 
distribution of data is centred. Such a value is referred to as a 

measure of central tendency.  
 

The common measures of location are; the arithmetic mean, the weighted 
mean, The Geometric and Harmonic mean, mode and median. A single value 

calculated is used to describe the distribution of the scores. They are called 
measures of central tendency because they estimate the tendency of the 

scores or the characteristics of people to focus on or cluster.  
 

 

Measures of Location  
 

Measures of location include the following 

 

4.2 Methods of Computing the Measures  

 

The arithmetic mean, the weighted mean, The Geometric and  Harmonic 
mean 

Mean 

The mean is considered to be the most important measure of location.  It is 

at times referred to as the average value of the variable.  It is obtained by 

adding all the data values and dividing by the number of items.   
 

If the data are from a sample, the mean is denoted by  x , and if the data is 

from a population the mean is denoted by  

 

Let the number (n) of data items in a sample be denoted by :  x1 , x2 , ..., xn 
.  

The mean is computed using the following formulae: 

 

Arithmetic Mean  

This is usually referred to as the mean and is the most widely unsed of all 

averages. 
 



 

Ungrouped data 
If observations are in a raw form, the mean is computed by summing all the 

observations and then dividing their sum by the total number of their 
observations  

 

(a) Ungrouped data : X  = 
n

x
n

=i

i
1      

 

This measure has one major disadvantage which is that it is affected by 
extreme values. 

 
Example; consider the marks of 7 bstat students, 20, 38, 40, 60, 98, 95, 97 

 
 

Solution; 
 

X = means  

 

X = 20+38+ 40+ 60+ 98+95+97 

 7 

X = 64 
 

 

Note: We shall suppress the index i on the summation symbol and on 
the variable x, frequency f etc. 

 
 (b) Grouped data     : 

  (I) X  = 



f

fx
  where f = n 

  (ii) X  = 

















f

fd
c+xA , where AX = assumed mean 

      d = code (in coding method) 

      c = class length/width 
    

Geometric Mean (G.M) 

 

We define the geometric mean by 

  n xxx=MG n......... 21  



 

Harmonic mean (H.M) 

 

We define the harmonic mean(H.M) by: 

  


x

n
=MH

1
.  

If we are working with the entire population with N data items,  we 

substitute  for X  and N for n in the above expressions.  

 

 
The Weighted Mean 

 

WM = = 
wi

Xiwi
n

i


 

 

Supposing the observations xi i=1,2,……n, have corresponding weights Wi, 
i==1,2,……n, the defined weighted mean is as below; 

 
I  1  2  3  4  5  Total  

X 10  15 20 32 12 
W 4 3 1 3 2 13 

Xw 40 45 20 96 24 225 

 
 

Weighted mean = 225 
      13      

 
Weighted mean = 17.3 

 
 

4.3  Comparison of the mean, median and mode 
 

Example 4.1 
Given the following data find the mean and mean absolute deviation. 

 
(a)11, 14, 17, 20, 16, 10 

 
Solution 



Mean X  = 
n

x
n

=i

i
1  = 14.67

6

101620171411
=

+++++
 (corrected to 2dp)) 

 

Mean absolute deviation M.A.D = 
 
n

xx 
 =  

(3.67 + 0.67 + 2.33 + 5.33 + 1.33 + 4.67)/6 = 3.00 (corrected to 2 dp).  

 
 
(b)  

Goals(x) 0 1 2 3 4 5 6 

Frequency(f) 1 2 5 8 6 3 0 

 

Solution 
 

The computations are summarized in the following table: 
 

Goals 
X 

frequency 
f 

fx (x - x )  xx   f  xx   

0 
1 

2 
3 

4 
5 

6 

1 
2 

5 
8 

6 
3 

0 

0 
2 

10 
24 

24 
15 

0 

-3 
-2 

-1 
0 

1 
2 

3 

3 
2 

1 
0 

1 
2 

3 

3 
4 

5 
0 

6 
6 

0 
 

  25=f   75=fx      24=xxf   

 

Hence mean X  = 



f

fx
 = 75/25 = 3   

Mean absolute deviation M.A.D = 
 


 

f

xxf
 = 24/25 = 0.96 

(c) 

Class 0.5-8.5 8.5-16.5 16.5-24.5 24.5-32.5 32.5-
40.5 

Frequency(f) 3 7 8 5 2 

 

Solution 
The computations are shown in the table below 

 



Class midpoint 
x 

frequency 
f 

fx (x - 

x ) 

 xx   f  xx   

0.5-8.5 

8.5-16.5 
16.5-24.5 

24.5-32.5 

32.5-40.5 

4.5 

12.5 
20.5 

28.5 

36.5 

3 

7 
8 

5 

2 

13.5 

87.5 
164.0 

142.5 

73.0 

-14.7 

-6.7 
1.3 

9.3 

17.3 

14.7 

6.7 
1.3 

9.3 

17.3 

44.1 

46.9 
10.4 

46.5 

34.6 

   25=f   480.5=fx

 

   
182.5

=xxf 

 

Hence mean X  = 



f

fx
= 480.5/25 = 19.22 

Mean absolute deviation M.A.D = 
 


 

f

xxf
 = 182.5/25 = 7.3 

 

Median 

Although, the mean is the most commonly used measure of central location, 
there are situations in which the median is preferred.  In general, whenever 

there are extreme data values. The median is often the preferred measure of 
central location. 

 
The median of a set of n numbers, x1 , x2 , ..., xn , arranged in either 

ascending or descending order of magnitude, is computed using the 

following formula depending on whether n is even or odd. 
 

Note: For ungrouped data, 
(i)  If there is an odd number of items, the median is the value of the 

middle item when all items are arranged in ascennding/decsending 
order. 

(ii) if there is an even number of items, the median is the average value 
of the two middle items when all items are arranged in 

ascending/descending order. 
 

Median(Md) 
 (a)ungrouped data (In ascending/descending order) 



  































evenn,
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n
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X
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(b) grouped data 

  Md = Lo + c 

















d
m

b

f
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2
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where Lo = lower class boundary of the median  class 

   c = class length/width 

   f = total frequency = n 

   C.Fb = cumulative frequency preceding  (before) that of the 

median  

Class  

   fmd =frequency of the median class 

  Note : 
2

1 +f
= position of median 

 

Mode 

 

The mode is the data value that occurs most often i.e. the data value with 
the highest frequency. 

Note: 
(i) Situations can arise for which the greatest frequency occurs at two or 

more different values.  In these instances more than one mode exists.   
(ii) If the data have exactly two modes, we say that the data are bimodal.  

(iii) If the data have more than two modes, we say that the data are 
multimodal. 

(Iv) In multimodal cases the mode is almost never reported,  since listing 
three or more modes would not be helpful in describing a location for 

the data. 

 



For grouped data the mode is computed using the following formula: 

Mode(Mo) 

  Mo = Lo + c 
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  where Lo = lower boundary of the modal class 
    c = class length/width of the modal     

    class  
     d1 = fmo - fb 

     d2 = fmo - fa 

     fmo = frequency of the modal class 

     fb = frequency preceding(before) that of  the modal class 
  

     fa = frequency immediately after that of  the modal class  

Example 4.2 
Compute the median and mode for the following data: 

 
(a) 9, 2, 5, 10, 6 

 
solution 

In ascending order we have: 2, 5, 6, 9, 10 
            x1, x2, x3, x4, x5 

n = 5(odd), hence median Md = 

2

1+n
x  = 6 

There is no mode 

 
(b) 6, 7, 12, 9, 7, 12, 16, 20, 7, 4, 7, 12 

 
Solution 

In descending order we have:  
20, 16, 12, 12, 12, 9, 7,  7,  7,  7,  6,   4 

x1,  x2, x3, x4,  x5, x6, x7, x8, x9, x10, x11, x12 

n = 12 (even) 

Hence median = 

















1
22

2

1

+
n

x+
n

x  = (9 + 7)/2 = 8 

Mode = 7 
 

 (c)The table below gives the frequency of tail length of rats in a biology 
laboratory. 

  Length(cm)  Frequency 

   1-5   15 fb 



Modal class  6-10   24 fmo 

   11-15  23 fa 

   16-20  10 

   21-25  10 
   26-30  5 

   31-35  1 

   36-40  1 

 

Find the median and mode length of the tails. 
 

 (i)Mode 
 

Step1 
Determine the class(modal class) with the highest frequency 

Highest frequency is 24.  Hence modal class is 6 – 10 

 

Step2 
compute the mode 

Mo = Lo + c 
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  where Lo = lower boundary of the modal class = 5.5 

    c = class length/width of the modal class = 5  

     d1 = fmo - fb 

     d2 = fmo - fa 

     fmo = frequency of the modal class = 24 

     fb = frequency preceding(before) that of  the modal class 

= 15      fa = frequency immediately after that of the modal 

class = 23 

    Hence d1 = fmo - fb = 24 - 15 = 9 

      d2 = fmo - fa = 24 - 23 = 1 

Hence Mo = 5.5 +5[9/(9 + 1)] = 10 

Note: 
the mode can as well be obtained from the histogram using the 

tallest bar(rectangle) 
 

(ii)Median 
The computations are shown in the following table: 



 

 

class/ 
length(cm) 

class 
boundaries 

midpoint 
x 

frequency 
f 

cumulative 
frequency(C.F) 

1-5 
6-10 

 

11-15 

16-20 

21-25 
26-30 

31-35 
36-40 

0.5-5.5 
5.5-10.5 

 

10.5-15.5 

15.5-20.5 

20.5-25.5 
25.5-30.5 

30.5-36.6 
35.5-40.5 

3 
8 

 

13 

18 

23 
28 

33 
38 

 

15 
24 

 

23(fm) 

10 

10 
5 

1 
1 

15 

             39   

(C.Fb) 

(position of Md)   

              62 

(higher) 

72 
82 

87 
89 

90 

    90=f   

 

Step 1: 

Determine the position of the median : Position = 
2

1 +f
 = (90 +1)/2 = 

45.5 
 

Step 2 
 

Determine the two values between which the position in step1 lies in the 
column of cumulative frequency. Take the higher (bigger in magnitude)of 

the two values and use its row to determine the median class. Hence median 
class is 11-15. 

 
Step 3 

 

Compute the median 
 

Now,  Md = Lo + c 
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where Lo = lower class boundary of the median  class = 10.5 

   c = class length/width = 5 

   f = total frequency = n = 90 



  C.Fb = cumulative frequency preceding (before) that of the 

median  

class = 39  

   fmd =frequency of the median class = 23 

  
f 1

2
= position of median = 45.5 

Hence,  Md = 10.5 + 5(45.5 - 39)/23 = 11.91 (corrected to 2 dp)  

Note: 

The median can also be determined from the cumulative 
frequency curve (Ogive) 

 
 

 Review Questions 

 
 

 

 

 

 

 

 

 

 

 



Unit 5 

Measures of Variability 
 

5.1 Range  
Given the distance between the largest and the smallest observation in a 

given data act or ungrouped data, range is given as H-L for H is largest 

observation and L is the smallest observation.  

 For grouped data, it’s given by  

 Use of class limits; here the range is the difference between the 

upper class limit of the last class and the lower limit of the 1st class 

interval.  

 Use of class marks; here the range is the difference between the 

class mark of the last class interval and the class mark of the 1st class 

interval.  

Examples;  

59-74 

74.5-58.5 

Range = 15 

This is the simplest measure of dispersion. 

 Range = Largest value - smallest value 
For example 4.3  

(a) range = 2825 - 2210 = 615 
(b) range = 49-14 =35(using upper class limits for largest and smallest 

class) 

              =45-10 =35(using lower class limits for largest and smallest class) 
             =49.5-14.5=35( using upper class boundaries for largest and 

smallest class) 
             =44.5-9.5=35( using lower class boundaries for largest and 

smallest class) 
  

Interquartile range 
A measure of dispersion that overcomes the dependence on extreme data 

values is the interquartile range. 
 

This measure is simply the difference between the third quartile and the first 
quartile. 

Interquartile range = (Q3 - Q1) 



semi-interquartile range = (Q3 - Q1)/2 

 

Example 4.4 
Consider example 8.  Find the the interquartile range and the semi-

interquartile range. 
Solution 

(a) interquartile range = Q3 - Q1 = 2500 - 2365 = 135 
    semi-inetrquartile range = (Q3 - Q1)/2 = 135/2 = 67.5 

 

(b) interquartile range =(Q3 - Q1) = 36.75 - 24.19 = 12.56  
     semi-interquartile range =(Q3 - Q1)/2  

           = 12.56/2 = 6.28 

 

Interpretation of the range  

The wider the range, the greater the dispersion and vice versa provided the 

units are similar.  

 

Characteristics of the range  

 The range is simple easily understood and calculated. It is ideal for 

preliminary work or when a quick at measure of dispersion is required.  

 It is sensitive to extreme or deviant scores, because of its sensitivity 

to the extreme scores, the range is often unrealizable (instable and 

inconsistent), and misleading. Calculation of the range does not put 

into consideration how the scores are distributed.  

 Calculation of the range does not put into consideration how the scores 

are distributed.  

 It is not used in any statistical test.  

 

5.2 Mean Deviation 
Mean deviation is the sum of the deviations of each score from the mean, 

without regard to the sign, divided by the number of scores. For a given data 
set xi, i= 1,2,3..n, we defined the mean deviation as the average of the 

absolute deviations of the observations from their mean.  
 

Mean Absolute Deviation (M.A.D) 



 

We define the mean absolute deviation by: 
 

 (a) Ungrouped data       

  M.A.D = 
 
n

xx 
 

Example;  
Find the mean deviation for the follow data 

2,3,6,8,11 
 

Solution;  
M.D = 2 +3 +6 +8 +11  

  5 
 

M.D = 6 
 

 
(b) Grouped data 

  M.A.D = 
 


 

f

xxf
 

 

5.3 Quartiles 

It is often desired to divide data into four parts, with each part containing 
approximately one - fourth. The division  points are referred to as 

quartiles and are defined as: 
 Q1 = first quartile, or 25th percentile 

 Q2 = second quartile, or 50th percentile (also the median) 

 Q3 = third quartile, or 75th percentile. 

 
(a) Ungrouped data 

 
The computational steps of  the quartiles are the same as those of the 

percentiles with a  few slight modifications as shown below: 
For Q1 

 position = (i/100)n = (25/100)n =(1/4)n 
 

For Q2 

position = (i/100)n = (50/100)n = (1/2)n = position of median 

 

For Q3 

position = (i/100)n = (75/100)n = (3/4)n  

 



In general the position of the ith quartile, Qi, = (i/4)n 

i = 1, 2, 3 
 

(b) Grouped data 
 

The steps are the same as those for finding the median. 
 

For grouped data the ith quartile is computed using the following formula. 

i-th quartile( Qi) = Lo + c 
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  where Lo = lower class boundary of the quartile class 
   c = class length/width 

   f = total frequency = n 

   C.Fb = cumulative frequency preceding (before) that of the 
quartile  

    class  
   

i
Qf  =frequency of the percentile class 

  Note : 
4

1 )+fi(
= position of the ith quartile 

 

Example 4.3 

 
(a) The table below shows the monthly starting salaries for a sample of 12 

Business School Graduates 
 

 Graduate Monthly salary($) Graduate Monthly salary($) 
  1  2350    7  2390 

  2  2450    8  2630 
  3  2550    9  2440 

  4  2380    10  2825 
  5  2255    11  2420 

  6  2210    12  2380 

 

 Find the   (i) 50th percentile and the 85th percentile 

   (ii) first, second and third quartiles 
(i)Solution 

 
Step 1 : Arranging the data in ascending order we have : 

 
2210 2255 2350 2380 2380 2390 2420 2440 2450 2550 2630 2825 



Note: 

n = 12 (even).  Hence median = (2390 + 2420)/2 = 2405 
 

Step 2: 
 

Position of ith percentile = (i/100)n 
Hence, postion of 50th percentile =(50/100)12 = 6. 

  position of 85th percentile = (85/100)12 = 10.2 
Step 3 

 
Since the position of the 50th percentile is an integer(6), then the 50th 

percentile is the average of the 6th and 7th data values.   
i.e 50th percentile,P50 = (2390 + 2420)/2 = 2405 = median 

 
For the 85th percentile, since the position (10.2) is not an integer, we round 

up.  Hence the position of the 85th percentile is the next integer 

greater than 10.2, the 11th position.  
 

Therefore, the 85th percentile corresponds to the 11th data value. 
Thus, the 85th percentile, P85 = 2630. 

(ii) Finding the quartiles 
 

Solution 
 

Step1: Arrange the data in ascending order: 
2210 2255 2350 2380 2380 2390 2420 2440 2450 2550 2630 2825 

 
Step2: 

The position of the ith quartile(Qi) is: 
 position = (25i/100)n = (i/4)n 

Hence for Q1, position = (1/4)12 = 3 

  For Q2, position = (1/2)12 = 6 
        For Q3, position = (3/4)12 = 9 

 
Step3: 

Note: All positions are integers. 
Thus, Q1 = (2350 + 2380)/2 = 2365 

 Q2 = (2390 + 2420)/2 = 2405 = median. 
 Q3 = (2450 + 2550) = 2500 

 
(b)  The following table shows the weights of 100 students measured to the 

nearest kg. 
 

 Weight(kg) Number of children 



 10-14  5 

 15-19  9 
 20-24  12 

 25-29  18 
 30-34  25 

 35-39  15 
 40-44  10 

 45-49  6 

  

Find: 
(i) 65th percentile 

(ii) first and third quartile 

 
The computations are arranged in the following table 

 

weight(kg) Class 

boundaries 

Midpoint 

x 

frequency 

f 

Cumulative 

frequency(C.F) 

10-14 
15-19 

 

20-24 

25-29 

 

30-34 

 

35-39 

 
40-44 

45-49 

9.5-14.5 
14.5-19.5 

 

19.5-24.5 

24.5-29.5 

 

29.5-34.5 

 

34.5-39.5 

 
39.5-44.5 

44.5-49.5 

12 
17 

 

22 

27 

 

32 

 

37 

 
42 

47 

5 
9 

 

   12 fQ1  

18 

 

   25 fPi  

 

   15 fQ3 

 
10 

6 

5 
      14  C.Fb 

25.25 

26 
      44  C.Fb 

65.65 

     69  C.Fb 

75.75 

84 

 
94 

100 

    100=f   

 

(i) position of 65th percentile = 
100

1 )+fi(
= 65(100 +1)/100 

       = 65.65 

Hence 65th percentile class is 30-34 
Now the ith percentile is given by: 

 

  i-th percentile( pi) = Lo + c 
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 Where Lo = lower class boundary of the percentile   class = 29.5 



   c = class length/width = 5 

   f = total frequency = n = 100 
  C.Fb = cumulative frequency preceding (before) that of the 

percentile   
            class = 44  

   f p
i  =frequency of the percentile class = 25 

 Hence P65 = 29.5 + 5[65.65 - 44]/25 = 33.83 

 

The semi-interquartile range 

 
The semi inter-quartile range is given by: (Q3 – Q1)/2 

      Position of first quartile, Q1,  = 
4

1 )+fi(
=(100 + 1)/4 

      =25.25 

Hence the first quartile class is:  20-24. 
 

Now first quartile( Q1) = Lo + c 
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  where Lo = lower class boundary of the quartile  class = 19.5 

   c = class length/width = 5 
   f = total frequency = n = 100 

   C.Fb = cumulative frequency preceding (before) that of the 
quartile  

 class = 14  

  
f Q

1  =frequency of the percentile class = 12 

Hence Q1 = 19.5 + 5[25.25 - 14]/12 = 24.19 

 

Position of third quartile, Q3,  = 
4

1 )+fi(
= 3(100 + 1)/4 

      =75.75 

Hence the third quartile class is:  35-39. 

 

Now third quartile( Q3) = Lo + c 
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 where Lo = lower class boundary of the quartile  class = 34.5 
   c = class length/width = 5 



   f = total frequency = n = 100 

   C.Fb = cumulative frequency preceding (before) that of the 
quartile  

class = 69  

  f Q
3  =frequency of the quartile class = 15 

Hence Q3 = 34.5 + 5[75.75 - 69]/15 = 36.75 
Semi-interquartile range is: (Q3 – Q1)/2 = 36.75 – 24.19 =   12.56 

 
5.4 Percentiles 

A percentile is a measure that locates values in the data set that are not 
necessarily central locations.  A percentile provides information about how 

the data items are spread over the interval from the smallest value to 

largest value. 
 

(a) Ungrouped data 
For data that do not have numerous repeated values, the ith percentile 

divides the data into two parts: 
(i) Approximately i percent of the items have values less than the 

ith percentile 
(ii) Approximately (100 - i)percent of the items have values greater 

than the ith  percentile. 
 

Thus, the ith percentile is a value that at least i percent of the items take 
this value or less and at least (100 - i) percent of the items take this value 

or more. 
 

Step1 

Arrange the data in ascending order(rank order from smallest value to 
largest value) 

 
Step2 

Compute the position of the percentile from 

  position = (i/100)n 

 where i is the percentile of interest and n is the number of items 
Step3 

(a)  If the position is not an integer, round up.  The next integer value 
greater than this position denotes the position of the ith percentile. 

(b) If the position is an integer, the ith percentile is the average of the 

data values in position and position + 1. 
 

(b) Grouped data 
The steps are the same as those for finding the median. 



For grouped data the ith percentile is computed from the following 

expression: 
 

i-th percentile( Pi) = Lo + c 
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  where Lo = lower class boundary of the percentile  class 

   c = class length/width 

   f = total frequency = n 

  C.Fb = cumulative frequency preceding (before) that of the 

percentile class  
  

i
pf  =frequency of the percentile class 

  Note : 
100

1 )+fi(
= position of the ith percentile 

 
5.5 The variance and standard deviation 

 

Variance is defined as the mean of the squared deviations of individual 
observations from their arithmetic means denoted by δ2 for population and 

S2 for a sample.  
The variance is the measure of dispersion that utilises all the data values.   

 
The variance is based on the difference between each data value, xi, and the 

mean ( X , for the sample and , for the population). 

 
This difference is known as the deviation about the mean(see mean 

absolute deviation). The variance may be obtained using any of the 
following formulae: 

 
(a) Ungrouped data 

 

 (i) s2 =    2

2

222
2

2

n

xxn

n

x

n

x
x

n

x   















  

 (ii) s2 = 
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(b) Grouped data 

 (i) s2 =    22
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 (ii) s2 =  
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xxf
,  where n = f 

 (iii) s2 = c2 
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, using the assumed    

 mean(coding method) 

  or  s2 = c2 
 

















 
)n(n

fdfdn 2

1

2

, where n = f 

 
Note:  

(i) If we are working with the entire population with N data items, we 

substitute  for X  and N for n in the above expressions. However, for 

(a)(ii) and (b)(ii) we use N in the denominator instead of N-1! 

(ii)Standard deviation is defined to be the positive square root of the 
variance. 

Standard deviation =  iancevar  

For sample, standard deviation, s = 2s  

For population, standard deviation,  = 2s  

 

 Example  
 

Find the variance and standard deviation for the following data. 
 

(a)11, 14, 17, 20, 16, 10 
 

 
Solution 

Mean X  = 
n

x
n

=i

i
1  = 14.67

6

101620171411
=

+++++
 (corrected to 2dp) 

 

Variance, s2 = 
 

1

2




n

xx
 =  

[(-3.67)2 + (-0.67)2 + (2.33)2 + (5.33)2 + (1.33)2 + (-4.67)2]/5 = 11.89 
(corrected to 2 dp). 

 

Standard deviation, s =   3.4511.89 = (2dp)  

 
(b)  



Goals(x) 0 1 2 3 4 5 6 

frequency(f) 1 2 5 8 6 3 0 

 
The computations are summarized in the following table: 

 

Goals 

x 

frequency 

f 

fx (x - x ) x x
2
 f x x

2
 

o 
1 

2 

3 
4 

5 
6 

1 
2 

5 

8 
6 

3 
0 

0 
2 

10 

24 
24 

15 
0 

-3 
-2 

-1 

0 
1 

2 
3 

9 
4 

1 

0 
1 

4 
9 

9 
8 

5 

0 
6 

12 
0 

 

  25=f   75=fx

 

    
2

xxf =4

0 

 

Hence mean X  = 



f

fx
 = 75/25 = 3   

Mean variance, s2 = 
 

1

2




n

xxf
 , where n =  25=f  

Hence, s2 = 40/(25 - 1)= 1.67( 2 dp) 
 

Standard deviation, s =   1.291.67 = (2dp)  

 

(c)  The following table shows the weights of 100 students measured to the 
nearest kg. 

 
 Weight(kg) Number of children 

 10-14  5 

 15-19  9 
 20-24  12 

 25-29  18 
 30-34  25 

 35-39  15 
 40-44  10 

 45-49  6 

 

Solution 

 
 



Weight midpoint 
x 

frequency 
f 

code 
d 

 
d2 

 
fd 

 
fd2 

10-14 
15-19 

20-24 
25-29 

30-34 
35-39 

40-44 
45-49 

12 
17 

22 
27 

32 

37 
42 

47 

5 
9 

12 
18 

25 
15 

10 
6 

-4 
-3 

-2 
-1 

0 
1 

2 
3 

16 
9 

4 
1 

0 
1 

2 
9 

-20 
-27 

-24 
-18 

0 
15 

20 
18 

80 
81 

48 
18 

0 
15 

40 
54 

  f=100   fd=-36 fd2= 

336 

 

Method of assigning codes (d) 
 

Step 1 

 Choose the assumed mean, xA  = 32(use the column of mid-points). 
 

Step 2 

Assign code 0 to xA  

 
Step 3 

Assign consecutive negative codes to values above  xA  and consecutive 

positive codes to values below it.  

  

The mean, X  = 

















f

fd
c+xA , where AX = assumed mean = 32 

      d = code(in coding method) 
      c = class length/width = 5 

Hence, X  = 32 +5[-36/100] = 30.20 

 

Variance, s2 = c2 
 

















 
)n(n

fdfdn 2

1

2

, where n = f = 100 

 

Variance,  s2 = 52 
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1100100

36336100 2

 = 81.58 (2 dp) 

 

Hence, standard deviation, s =   9.0381.58 = (2 dp) 

 

 



 

 Interpretation of the standard deviation 

5.6 Coefficient of Variation 

 

the coefficient of variation (CV) is a normalized measure of dispersion of a probability 

distribution. It is also known as unitized risk or the variation coefficient.
 

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean 

: 

 

which is the inverse of the signal-to-noise ratio. The CV is defined only for non-zero mean and 

the absolute value is taken for the mean to ensure it is always positive. It is sometimes expressed 

as a percent, in which case the CV is multiplied by 100%.
[1]

 

The coefficient of variation should be computed only for data measured on a ratio scale. To 

demonstrate this using an example, if a group of temperatures are analyzed, the standard 

deviation does not depend on whether the Kelvin or Celsius scale is used since an object that 

changes its temperature by 1 K also changes its temperature by 1° C. However the mean 

temperature of the data set would differ in each scale by an amount of 273 and thus the 

coefficient of variation would differ. So the coefficient of variation may not have any meaning 

for data on an interval scale.
[2]

 

[edit] Comparison to standard deviation 

[edit] Advantages 

The coefficient of variation is useful because the standard deviation of data must always be 

understood in the context of the mean of the data. The coefficient of variation is a dimensionless 

number. So for comparison between data sets with different units or widely different means, one 

should use the coefficient of variation instead of the standard deviation. 

[edit] Disadvantages 

 When the mean value is close to zero, the coefficient of variation will approach infinity 

and is hence sensitive to small changes in the mean. 

 Unlike the standard deviation, it cannot be used to construct confidence intervals for the 

mean. 

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean 

: 
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which is the inverse of the signal-to-noise ratio. The CV is defined only for non-zero mean and 

the absolute value is taken for the mean to ensure it is always positive. It is sometimes expressed 

as a percent, in which case the CV is multiplied by 100%.
[1]

 

The coefficient of variation should be computed only for data measured on a ratio scale. To 

demonstrate this using an example, if a group of temperatures are analyzed, the standard 

deviation does not depend on whether the Kelvin or Celsius scale is used since an object that 

changes its temperature by 1 K also changes its temperature by 1° C. However the mean 

temperature of the data set would differ in each scale by an amount of 273 and thus the 

coefficient of variation would differ. So the coefficient of variation may not have any meaning 

for data on an interval scale.
[2]

 

[edit] Comparison to standard deviation 

[edit] Advantages 

The coefficient of variation is useful because the standard deviation of data must always be 

understood in the context of the mean of the data. The coefficient of variation is a dimensionless 

number. So for comparison between data sets with different units or widely different means, one 

should use the coefficient of variation instead of the standard deviation. 

[edit] Disadvantages 

 When the mean value is close to zero, the coefficient of variation will approach infinity 

and is hence sensitive to small changes in the mean. 

 Unlike the standard deviation, it cannot be used to construct confidence intervals for the 

mean. 

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean 

: 

 

which is the inverse of the signal-to-noise ratio. The CV is defined only for non-zero mean and 

the absolute value is taken for the mean to ensure it is always positive. It is sometimes expressed 

as a percent, in which case the CV is multiplied by 100%.
[1]

 

The coefficient of variation should be computed only for data measured on a ratio scale. To 

demonstrate this using an example, if a group of temperatures are analyzed, the standard 

deviation does not depend on whether the Kelvin or Celsius scale is used since an object that 

changes its temperature by 1 K also changes its temperature by 1° C. However the mean 
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temperature of the data set would differ in each scale by an amount of 273 and thus the 

coefficient of variation would differ. So the coefficient of variation may not have any meaning 

for data on an interval scale.
[2]

 

[edit] Comparison to standard deviation 

[edit] Advantages 

The coefficient of variation is useful because the standard deviation of data must always be 

understood in the context of the mean of the data. The coefficient of variation is a dimensionless 

number. So for comparison between data sets with different units or widely different means, one 

should use the coefficient of variation instead of the standard deviation. 

[edit] Disadvantages 

 When the mean value is close to zero, the coefficient of variation will approach infinity 

and is hence sensitive to small changes in the mean. 

 Unlike the standard deviation, it cannot be used to construct confidence intervals for the 

mean. 

Applications 

The coefficient of variation is also common in applied probability fields such as renewal theory, 

queueing theory, and reliability theory. In these fields, the exponential distribution is often more 

important than the normal distribution. The standard deviation of an exponential distribution is 

equal to its mean, so its coefficient of variation is equal to 1. Distributions with CV < 1 (such as 

an Erlang distribution) are considered low-variance, while those with CV > 1 (such as a hyper-

exponential distribution) are considered high-variance. Some formulas in these fields are 

expressed using the squared coefficient of variation, often abbreviated SCV. In modeling, a 

variation of the CV is the CV(RMSD). Essentially the CV(RMSD) replaces the standard 

deviation term with the Root Mean Square Deviation (RMSD). 

[edit] Distribution 

Provided that negative and small positive values of the sample mean occur with negligible 

frequency, the probability distribution of the coefficient of variation for a sample of size n has 

been shown by Hendricks and Robey 
[3]

 to be 

 

where the symbol indicates that the summation is over only even values of n-1-i. 
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This is useful, for instance, in the construction of hypothesis tests or confidence intervals. 

 

 

 Review Questions 

 
Question 1 

a) Briefly explain the following: - 

(i) Median       
(ii) Mode        

b) Differentiate between the weighted mean and the arithmetic mean 
c) The Table below shows the monthly allowances in Dollars of the 

employees in American Embassy in a certain Country. 

Allowances 

($) 

10 – 

19 

20 – 

29 

30 – 

39 

40 – 

49 

50 – 

59 

60 - 69 

No. of 

Employees 

12 14 16 10 15 8 

Calculate: 
(i) The mean        

(ii) The median        
(iii) The mode        

 

Question 2 

a) Distinguish between the following 
(i) Decile and Percentile      

(ii) Range and Inter-quartile range     
b) Briefly explain Quartile?       

c) The Table below shows the ages in years of the contestants for Miss 

World. 

Age 20 - 

24 

25 – 

29 

30 – 

34 

35 – 

39 

40 – 

44 

45 – 

49 

50 – 

54 

frequency 12 24 30 18 11 5 1 

(i) Draw the histogram and the frequency polygon of the above 

Data on the same axis.       
(ii) Calculate the Inter-quartile range.     

 
Question 3 

a) Briefly explain the following 
i. Arithmetic mean 

http://en.wikipedia.org/wiki/Hypothesis_test
http://en.wikipedia.org/wiki/Confidence_interval


ii. Weighted mean 

iii. The Median  
iv. Variance 

v. Standard deviation     
b) The Table below shows the age of participants in a certain 

workshop in Hotel Africana 

Ages 20 – 

24 

25 – 

29 

30 – 

34 

35 – 

39 

40 – 

44 

45 – 

49 

50 - 

54 

frequency 11 24 30 18 11 5 1 

i. Calculate the inter-quartile Range 

ii. Calculate the mean 
iii. Calculate the median 

iv. Calculate the mode 
v. Calculate the standard deviation    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit 6   

Introduction to Probability Theory 
 

This unit provides an introduction to probability theory. Experience 
resulting from repeated experiments or from recurrent 



observations, is frequently used to predict the outcome of future 

events.  For example, from the past and present knowledge of 
weather conditions in a particular locality, we may say that it will  

probably be warm tomorrow  or that there is a probability of rain. 
In this sense we are using the word probability to denote a belief 

founded on a certain amount of evidence and in many cases, no 
doubt, influenced by considerable wishful thinking. 

 
 In mathematical usage the meaning of the word probability is 

established by definition and is not connected with beliefs or 
wishful thinking. 

 Statistics and probability are so fundamentally interrelated that 
it is impossible to discuss statistics without an understanding of 

the meaning of probability. 
 Knowledge of probability theory makes it possible to interpret 

statistical results, since many statistical procedures involve 

conclusions based on samples which are always affected by 
random variation, and it is by means of probability theory that 

we can express numerically the inevitable uncertainties. 
 

6.1  Basic Set Concepts Sample Space, Sample Point, Event And 
 Probability Of An Event 

 
 

A set is a well defined  collection of objects. Elements of a set are enclosed 
in the braces {} e.g. A =  {Students of Kampala International University} is 

a set. 
             B = {…, -2, -1, 0, 1, 2, …} is a set of integers 

 
If every element of a set A is also contained in a set B, then A is called a 

subset of B i.e.  A   B. 

 
A universal set is a set containing everything under the field of study. It is 

denoted by U or  . 

Note: 

(i) All subsets belong to the universal set 
(ii) If x is an element/member of the set A, we write: xA 

 
An empty set, denoted by :  is a set with no elements 

The intersection of two sets A and B is denoted by : A  B, and is the set 

of all elements in A and B. 

 
i.e. A  B = { x A and x B} 



 

An element qualifies for the intersection of A,B if it is in both A and B. For 
example, if A=(2, 8, 14, 18) and B=(4, 6, 8, 10, 12), then the intersection 

of (A,B)=8, i.e. A  B = { x A and x B}={8} 

 

The key word indicating the intersection of two or more events is and 
 

Note: 
If A  B = , then the sets A and B are said to be disjoint i.e. A and B do 

not have any element(s)  in common. 
 

The union of two sets A and B is denoted by : A  B and is the set of all 

elements in  either A or B or both. 

 
i.e. A   B = { x A or x B} 

 
An element qualifies for the union of A, B if it is in either A or B or in both A 

and B. For example, if A=(2, 8, 14, 18) and B=(4, 6, 8, 10, 12), then the 

union of (A,B)=(2, 4, 6, 8, 10, 12, 14, 18), i.e. A   B = { x A or x B} = 

{2, 4, 6, 8, 10, 12, 14, 18} 

 
The key word indicating the union of two or more events is or. 

 
If A is a set of the universal set U, then the complement of the set A with 

respect to U is denoted by: A'   and is the set of all elements in U but not in 
A. 

 
i.e. A' = { x U and  x A} 

 
Note: 

The above basic set concepts are a useful tool in understanding the 
probability concepts since there is a one-to-one correspondence between 

set theory and probability theory. 
 

 

A statistical experiment is any process that generates raw data.  
Experiment is an activity that is either observed or measured 

 
For example the following are statistical experiments: 

 Tossing a die 
 Flipping a coin 

 Drawing a card 
 



Any outcome of a statistical experiment is called an event.  An event is a 

possible outcome of an experiment. For example, if the experiment is to 
sample six lamps coming off a production line, an event could be to get one 

defective and five good ones. 
 

Elementary Events: Elementary events are those types of events that 
cannot be broken into other events. For example, suppose that the 

experiment is to roll a die. The elementary events for this experiment are to 
roll a 1 or a 2, and so on, i.e., there are six elementary events (1, 2, 3, 4, 5, 

6). Note that rolling an even number is an event, but it is not an elementary 
event, because the even number can be broken down further into events 2, 

4, and 6. 
 

A set whose elements represent all the possible outcomes of a statistical 
experiment is called a sample space, denoted by S.  A sample space is a 

complete set of all events of an experiment. The sample space for the roll of 

a single die is 1, 2, 3, 4, 5, and 6. 
 

The sample space of the experiment of tossing a coin three times is: 
 

First toss.........T T T T H H H H 
Second toss.....T T H H T T H H 

Third toss........T H T H T H T H 
 

Note: 
Sample space can aid in finding probabilities. However, using the 

sample space to express probabilities is hard when the sample space is 
large. Hence, we usually use other approaches to determine 

probability. 
 

Note: 

An event is a subset of a sample space. 
For example, tossing a die, S = {1, 2, 3, 4, 5, 6} 

Flipping a coin, S = {h, t}, where h = head  and  t = tail 
Any element of a sample space is called a sample point. 

 
Note: 

An event consists of one or more sample points. 
The probability of an event A is the sum of weights  assigned to all 

sample points in an event A. It is denoted by : P(A) (or Pr(A) or Prob(A)) 
 

Probability theory provides a way to find and express our uncertainty in 
making decisions about a population from sample information. Probability is 

a number between 0 and 1. The highest value of any probability is 1. 



Probability reflects the long-run relative frequency of the outcome. A 

probability is expressed as a decimal, such as 0.7 or as a fraction, such as 
7/10, or as percentage, such as 70%. 

 
Note: 

(i) The probability of an event A, P(A), lies between 0 and 1. That 
is,  it can  neither be  negative nor greater than 1 

i.e  0   P(A)  1 

(ii) P() = 0, and P(S) = 1.  That is , the probability of an empty set 

is 0 and that of the sample space is 1. 
(iii) If P(A) = 0, the event A cannot occur, and if P(A) = 1 , then the 

event will certainly occur.  
(iv) Weights are assigned to sample points in the sample space, S. 

(v) If A and B are two events, then P(  A  B) = P(A) + P(B) - P(A  

B) 

(vi) If A is an event and A' is its complement, then P(A) + P(A') = 1 
 

 

Approaches of Assigning Probabilities 
There are three approaches of assigning probabilities, as follows: 

 
1. Classical Approach 

 
Classical probability is predicated on the assumption that the outcomes of an 

experiment are equally likely to happen. The classical probability utilizes 
rules and laws. It involves an experiment. The following equation is used to 

assign classical probability: 
 

P(A) = Number of favorable outcomes / Total number of possible 
outcomes 

 
Note: 

We can apply the classical probability when the events have the same 

chance of occurring (called equally likely events), and the set of events 
are mutually exclusive and collectively exhaustive. 

 
 

2. Relative Frequency Approach 
Relative probability is based on cumulated historical data. The following 

equation is used to assign this type of probability: 
 

P(A) = Number of times an event occurred in the past/ Total number 
of opportunities for the event to occur. 

Note : 



The relative probability is not based on rules or laws but on what has 

happened in the past. For example, the company wants to decide on 
the probability that its inspectors are going to reject the next batch of 

raw materials from a supplier. Data collected from the company record 
books show that the supplier had sent your company 80 batches in the 

past, and inspectors had rejected 15 of them. By the method of 
relative probability, the probability of the inspectors rejecting the next 

batch is 15/80, or 0.19. If the next batch is rejected, the relative 
probability for the subsequent shipment would change to 16/81 = 

0.20. 
 

3. Subjective Approach 
The subjective probability is based on personal judgment, accumulation of 

knowledge, and experience. For example, medical doctors sometimes assign 
subjective probabilities to the length of life expectancy for people having 

cancer. Weather forecasting is another example of subjective probability. 

 
Types of Probability 

Four types of probabilities are discussed in this unit: 
 

1. Marginal Probability 
A marginal probability is usually calculated by dividing some subtotal by the 

whole. For example, the probability of a person wearing glasses is calculated 
by dividing the number of people wearing glasses by the total number of 

people. Marginal probability is denoted P(A), where A is some event. 
 

2. Union Probability 
A union probability is denoted by P(A or B), where A and B are two events. 

P(A or B) is the probability that A will occur or that B will occur or that both 
A and B will occur. The probability of a person wearing glasses or having 

blond hair is an example of union probability. All people wearing glasses are 

included in the union, along with all blondes and all blond people who wear 
glasses. 

 
3. Joint Probability 

A joint probability is denoted by P(A and B). To become eligible for the joint 
probability, both events A and B must occur. The probability that a person is 

a blond head and wears glasses is an example of joint probability. 
 

4. Conditional Probability 
A conditional probability is denoted by P(A|B). This phrase is read: the 

probability that A will occur given that Y is known to have occurred. An 
example of conditional probability is the probability that a person wears 

glasses given that she is blond. 



 

 
Methods to Use in Solving Probability Problems 

 
There are indefinite numbers of ways which can be used in solving 

probability problems. These methods include the tree diagrams, laws of 
probability, sample space, insight, and contingency table. Because of the 

individuality and variety of probability problems, some approaches apply 
more readily in certain cases than in others.  

 
There is no best method for solving all probability problems. 

 
 

6.2 Laws of Probability; Multiplication Law, Addition Law 

Three laws of probability are discussed in this unit:  

 the additive law,  
 the multiplication law, and  

 The conditional law. 
 

The Additive Law 
 

A. General Rule of Addition  
When two or more events will happen at the same time, and the events are 

not mutually exclusive, then: 
 

P(A or B) = P(A) + P(B) - P(A and B) 
 

For example, what is the probability that a card chosen at random from a 
deck of cards will either be a king or a heart? 

P(King or Heart) = P(X or Y) = 4/52 + 13/52 - 1/52 = 30.77% 

 
B. Special Rule of Addition:  

When two or more events will happen at the same time, and the events are 
mutually exclusive, then: 

 
P(X or Y) = P(X) + P(Y) 

 
For example, suppose we have a machine that inserts a mixture of beans, 

peas, and other types of vegetables into a plastic bag. Most of the bags 
contain the correct weight, but because of slight variation in the size of the 

beans and other vegetables, a package might be slightly underweight or 
overweight. A check of many packages in the past indicate that: 

 



Weight.................Event............No. of Packages.........Probability 

 
Underweight..........A.......................100...........................0.025 

Correct weight.......B.......................3600.........................0.9 
Overweight............C.......................300...........................0.075 

Total................................................4000......................1.00 
 

What is the probability of selecting a package at random and having the 
package be under weight or over weight? Since the events are mutually 

exclusive, a package cannot be underweight and overweight at the same 
time. The answer is:  

P(A or C) = P(0.025 + 0.075) = 0.1 
 

The Multiplication Law 
 

A. General Rule of Multiplication: 

When two or more events will happen at the same time, and the events are 
dependent, then the general rule of multiplication law is used to find the 

joint probability: 
 

P(A and B) = P(A) . P(B|A) 
 

 
For example, suppose there are 10 marbles in a bag, and 3 are defective. 

Two marbles are to be selected, one after the other without replacement. 
What is the probability of selecting a defective marble followed by another 

defective marble? 
Probability that the first marble selected is defective:  

P(A)=3/10 
Probability that the second marble selected is defective:  

P(B)=2/9 

 
P(A and B) = (3/10) . (2/9) = 7% 

 
This means that if this experiment were repeated 100 times, in the long run 

7 experiments would result in defective marbles on both the first and second 
selections. Another example is selecting one card at random from a deck of 

cards and finding the probability that the card is an 8 and a diamond.  
 

P(8 and diamond) = (4/52) . (1/4) = 1/52 which is = P(diamond and 8) = 
(13/52) . (1/13) = 1/52. 

 
 

B. Special Rule of Multiplication: 



when two or more events will happen at the same time, and the events are 

independent, then the special rule of multiplication law is used to find the 
joint probability: 

 
P(A and B) = P(A) . P(B) 

 
If two coins are tossed, what is the probability of getting a tail on the first 

coin and a tail on the second coin? 
P(T and T) = (1/2) . (1/2) = 1/4 = 25%. This can be shown by listing all of 

the possible outcomes: T T, or T H, or H T, or H H. Games of chance in 
casinos, such as roulette and craps, consist of independent events. The next 

occurrence on the die or wheel should have nothing to do with what has 
already happened. 

 
The Conditional Law 

 

Conditional probabilities are based on knowledge of one of the variables. The 
conditional probability of an event, such as X, occurring given that another 

event, such as Y, has occurred is expressed as: 
 

P(A|B) = P(A and B) / P(B) = {P(A) . P(B|A)} / P(B) 
 

Note 
 When using the conditional law of probability, you always divide the joint 

probability by the probability of the event after the word given. Thus, to get 
P(A given B), you divide the joint probability of A and B by the unconditional 

probability of B. In other words, the above equation is used to find the 
conditional probability for any two dependent events. When two events, 

such as A and B, are independent their conditional probability is calculated 
as follows: 

 

P(A|B) = P(A) and P(B|A) = P(B) 
 

For example, if a single card is selected at random from a deck of cards, 
what is the probability that the card is a king given that it is a club? 

P(king given club) = P (A|B) = {P(A) .P(B|A)} / P(B) 
P(B) = 13/52, and P(king given club) = 1/52, thus  

P(king given club) = P(A|B) = (1/52) / (13/52) = 1/13 
Note that this example can be solved conceptually without the use of 

equations. Since it is given that the card is a club, there are only 13 clubs in 
the deck. Of the 13 clubs, only 1 is a king. Thus P(king given club) = 1/13. 

 
Combination Rule: 

 



The combination equation is used to find the number of possible 

arrangements when there is only one group of objects and when the 
order of choosing is not important. In other words, combinations are 

used to summarize all possible ways that outcomes can occur without listing 
the possibilities by hand. The combination equation is as follows: 
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     and 0<= x <="n"  

 

where: n = total number of objects, x= number of objects to be used at one 
time,  

C = number of ways the object can be arranged, and ! stands for factorial. 
Note: 0! = 1, and 3! means 3x2x1. 

 
Example 5.1 

For example, suppose that 4% of all TVs made by W&B Company in 1995 
are defective. If eight of these TVs are randomly selected from across the 

country and tested, what is the probability that exactly three of them are 

defective? Assume that each TV is made independently of the others. 
 

Using the combination equation to enumerate all possibilities yields: 
 

C = 8!/ 3! (8-3)! = (8x7x6x5!)/ {(3x2x1)(5!) = 336/6 = 56 
 

which means there are 56 different ways to get three defects from a total of 
eight TVs. Assuming D is a defective TV and G is a good TV, one way to get 

three defecs would be: P (D1 and D2 and D3 and G1 and G2 and G3 and G4 
ang G5). Because the TVs are made independently, the probability of getting 

the first three defective and the last five good is: 
(.04)(.04)(.04)(.96)(.96)(.96)(.96)(.96)=0.0000052  which is the 

probability of getting three defects in the above order. Now, multiplying the 
56 ways by the probability of getting one of these ways gives:  

(56)(0.0000052)=0.03%,  which is the answer for drawing eight TVs and 

getting exactly three defectives (in above order). 
 

 

Formulas 

 
General Rule of Addition 

P(A  B) = P(A) + P(B) – P( A  B) 

Special Law of Addition 

 P(A  B) = P( A) + P(B) 



General Law of Multiplication 

 P(A  B) = P(A).P(B|A) = P(B).P(A|B) 

Special Law of Multiplication 

 P(A  B) = P(A).P(B) 

Law of Conditional Probability 
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Example 5.2 
A coin is tossed twice.  What is the probability that at least one head will 

occur? 
Note: 

(i) Tossing a coin twice is the same as tossing two coins 
once. 

(ii) If the coin is balanced, then all the sample points are 
equally likely, i.e. the sample points should be equally 

weighted. 
 Therefore,  the sample space, S = { hh, ht, th, tt} 

Let w be the weight of each sample point.  

Hence w + w + w + w = P(S) = 1 
  4w = 1.    Hence w = ¼ 

Hence the probability of each sample point is ¼ 
Let A be the event that at least one head will occur. 

 A = {hh, ht, th} 
          w, w, w 

Hence, P(A) =  w + w + w = ¼ + ¼ +1/4  = ¾ 
Alternatively, P( at least one head) + P(no head) = 1 

  i.e. P(A) + P(A') = 1 
  P(A) +P(tt) = 1.  Hence P(A) = 1- P(A') = 1 - ¼ = ¾ 

Note: 
If an experiment can result in any of the N different equally 

likely outcomes and if exactly n of these correspond to event A, 
then the probability of event A is P(A) = n/N 

For the above example, the process of tossing a coin twice, results in four 

outcomes 
 (N = 4).  Exactly three (n = 3) of these correspond to event A. Thus P(A) = 

¾ 
 

Example 5. 3 



An even number is twice as likely to occur as an odd number when a die is 

tossed.  What is the probability that a number less than 4 occurs? 
 

Solution 
The sample space, S = {1, 2, 3, 4, 5, 6} 

Let w be the weight of an odd number.  Then the weight of an even number 
is 2w, since an even number is twice as  likely to occur,  as an odd number. 

Hence, S = {1,  2,   3,  4,   5,   6} 
                   w, 2w, w, 2w, w, 2w 

Therefore, w + 2w + w + 2w + w + 2w  = 9w 
  w = 1/9 

Thus, S = {1,   2,     3,   4,    5,      6} 
      1/9, 2/9, 1/9, 2/9, 1/9, 2/9 

Let A be the event that a number less than 4 occurs.  Then, A = {1,     2,    
3}  

                1/9, 2/9, 1/9  

Hence, P(A) = 1/9 + 2/9 + 1/9 = 4/9. 
 

Note: 
The definition, P(A) = n/N, is not applicable here, since the outcomes 

are not "equally likely". 
 

6.3 Types of Events 

Mutually Exclusive Events 

 
Those events that cannot happen together are called mutually exclusive 

events. For example, in the toss of a single coin, the events of heads and 
tails are mutually exclusive. The probability of two mutually exclusive events 

occurring at the same time is zero. 
 

Two events A and B are said to be mutually exclusive events if  
  A  B = ,   therefore,  P(A  B) = 0. 

 Thus, two events are mutually exclusive , if the occurrence of either event 
excludes the possibility of the occurrence of the other event i.e. either one 

or the other event,  but not both,  can occur. 
 

Note: 
 If two events A and B are mutually exclusive, then,  P( A  B) = (A) + 

P(B). 

 
Example 5.4 

 



(a) If a die is tossed and A is the event of obtaining an even number 

 i.e.  A = {2, 4, 6} 
and B is the event of obtaining an odd number,  

 i.e. B = {1, 3, 5} 
Then , A  B = ,   therefore,  P(A  B) = 0.  Therefore, A and B are 

mutually exclusive events. 
(b) The probability that a student passes Statistics is 2/3, and the 

probability that s(h)e    
      passes Corporate Finance is 4/9.  If the probability of passing at least 

one course is  
     4/5, what is the probability of passing both courses? 

Solution 
 Let A = event of passing Statistics,  P(A) = 2/3 

Let B = event of passing Corporate Finance,  P(B) = 4/9 
Let A  B = event of passing at least one of them,  P( A  B) = 4/5 

Let A  B = event of passing both,  P(A  B) = ? 

Note: These are not mutually exclusive events: both A and B can 

occur. 

Hence, using P( A  B) =P (A) + P(B) - P(A  B) 

We have:  4/5       =  2/3   + 4/9 - P(A  B) 

    P(A  B) = 14/45 

(c) What is the probability of getting a total of 7 or 11 when a pair of dice 

is tossed? 
Solution 

 The sample points are shown in the following diagram 
   

  First die 

 + 1     2     3     4     5     

6  
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Total number of sample points, in the sample space, S is 36.Thus, 
N(S) = 36 

Let A = event of getting a total  of 7, n(A) = 6 
 Hence, P(A) = n(A)/N(S) = 6/36 

 Let B = event of getting a total of 11, n(B) = 2 
 Hence, P(B) = n(B)/N(S) = 2/36 

Note: 
 A  B = ,  and thus P(A  B) =0.  Therefore, A and B are mutually 

exclusive. 

Hence, P( A  B) =P (A) + P(B) = 6/36 + 8/36 = 2/9 

 

 
Independent Events 

Two or more events are called independent events when the occurrence or 
nonoccurrence of one of the events does not affect the occurrence or 

nonoccurrence of the others. Thus, when two events are independent, the 
probability of attaining the second event is the same regardless of the 

outcome of the first event. For example, the probability of tossing a head is 
always 0.5, regardless of what was tossed previously. Note that in these 

types of experiments, the events are independent if sampling is done with 
replacement. 

 
Two events are said to be independent events if : 

 P(A  B) = P(A) .P(B) 



 

Therefore, two events are said to be independent if the occurrence or non-
occurrence of one event has no influence on the occurrence  or non-

occurrence of the other. 
 

Conditional Events 
Two events are said to be conditional events if : 

P(B/A) = P(B A)/P(A), provided  P(A)  0. 

 

That is, event B occurs given that event A has already occurred. 
 

Collectively Exhaustive Events 
A list of collectively exhaustive events contains all possible elementary 

events for an experiment. For example, for the die-tossing experiment, the 
set of events consists of 1, 2, 3, 4, 5, and 6. The set is collectively 

exhaustive because it includes all possible outcomes. Thus, all sample 

spaces are collectively exhaustive.  
 

 
Complementary Events 

The complement of an event such as A consists of all events not included in 
A. For example, if in rolling a die, event A is getting an odd number, the 

complement of A is getting an even number. Thus, the complement of event 
A contains whatever portion of the sample space that event A does not 

contain. 

 

Contingency Table 
 

This table is quite useful in obtaining probabilities especially if events are 
independent.  It is illustrated by way of example below. 

 

Example 5.5 
 

(a)  If a coin(with sides labelled: h and t) and a die ( with sides numbered: 
1 to 6) are  

thrown, the way in which a die lands  in no way does it affect the 
possible ways in which a coin lands and vice-versa. 

 
Therefore, throwing a die with a six, for example, and throwing  a coin with 

a head, are independent events.  If both are fair/unbiased, then 
   P(head and a six) = P(six).P(head) =1/2 x 1/6 =1/12 

 
(b)       In an examination only two papers namely Microeconomics I and  



     Microeconomics II were done.  The failure rates were 45% and 40% 

respectively.       
The number of candidates who sat the examination was 2000.  Find 

the probability   that a candidate selected at random,  
 

(i) Passed both Microeconomics I and Microeconomics II 
(ii) failed both Microeconomics I and Microeconomics II 

(iii) passed Microeconomics I and failed Microeconomics II  
 

Solution 
Let A = event of passing Microeconomics I .  Then A' = event of failing. 

 Thus , P(A') = 45/100 = 0.45, P(A) = 1 - P(A') = 0.55 
Let B = event of passing Microeconomics II.  Then, B' = event of failing. 

 Thus, P(B') = 40/100 = 0.40, P(B) = 1 - P(B') = 1 - 0.4 = 0.6 
Note: 

Passing/failing Microeconomics I in no way affects 

passing/failing Microeconomics II and vice-versa. 
Hence, the two events are independent. 

 
(i) Thus, P( A and B) = P(A  B) = P(A).P(B) = 0.55 x 0.6 = 0.33 

(ii) Note: It can be shown that if A and B are independent,  so are 
A' and B' . 

Hence, P(A' and B') = P(A' ' B) = P(A') x P(B') = 0.45 x 0.4 = 0.18 
(iii) P(A and B') = P(A  B') =? 

 
This may be obtained from the following contingency table: 

    

 A A'  

B P(A  B) = 0.33 P(A'  B) = 

0.27 

P(B) = 0.6 

B' P(A  B') =0.22 P(A'  B') = 

0.18 

P(B') = 0.4 

 P(A) = 0.55 P(A') = 0.45 1 

 
Note: The table above is filled  by using the following equations: 

(a) Adding row-wise we have: 
(i) P(A  B) + P(A'  B) = P(B) 

(ii) P(A  B') + P(A'  B') = P(B') 

(iii) P(A) + P(A') = 1 

(b) Adding column -wise we have: 
(i) P(A  B) + P(A  B') = P(A) 

(ii) P(A'  B) + P(A'  B') = P(A') 

(iii)        P(B) + P(B') = 1 

Therefore, P(A  B') = 0.22. 



 

 
Conditional Probability 

 
The conditional probability of B given A, denoted by: P(B/A),  is the 

probability that B occurs given that A has already occurred, and it is defined 
by: 

 P(B/A) = P(B A)/P(A), provided  P(A)  0. 

Note: 

(i) P(B A) = P(A  B), using commutative laws. 

(ii) Similarly, P(A/B) = P(A B)/P(B), provided  P(B)  0. 

 
Example 5.6 

 
A loaded (biased) die with an even number twice as likely as an odd number 

is tossed   
(i) What is the probability of getting a four? 

(ii) What is the probability of getting a four given that a number greater 

than three occurred? 
Solution 

Using the results of example 2, we have: 
S = {1,     2,    3,    4,   5,     6} 

         1/9, 2/9, 1/9, 2/9, 1/9, 2/9  
Let A = event of obtaining a four 

(i) A = {4} , hence P(A) = 2/9 
(ii) Let B = event of obtaining a number greater than 3 

B = {4, 5, 6} , hence, P(B) = 2/9 + 1/9 + 2/9 = 5/9 
 Note: 

 A B ={4}, hence, P(A B) = 2/9 

Therefore, P(A/B) = P(A B)/P(B) = (2/9)/(5/9) = 2/9  

 
Baye's Theorem 

 
This is a useful Theorem used to simplify and obtain  conditional 

probabilities.  It is illustrated by way of example below: 

 
Example 5.7 

The table below shows the number of males and females who are employed 
and those who are not employed. 

 

  Employe

d 

Unemployed 

Males 140 260 

Females 460 40 



 

(i) Determine the probability that a female is selected given that she is 
unemployed 

(ii) If the following additional information is available: 
36 employed and 12 unemployed belong to a club, determine 

the probability that the selected person belongs to a club. 
Solution: 

 Let F = event a female is selected i.e. a man is not selected = M' 
 Then, F' = event female is not selected i.e. a man is selected = M 

Let E = event a person is employed. 
 Then, E' = event person is unemployed 

(i) Required to find P(F/E') 
 

 

  Employe

d 

Unemployed Total 

Males 140 260 400 

Females 460 40 500 

Total 600 300 900 

 

Let S =  sample space , N(S) = 900, also n(E) = 600, n(E') = 300, n(M) = 
400 

  n(F) = 500 
Now, P(F/E') = P(F  E')/P(E'), provided P(E') is not zero 

 But n(F  E ' ) = 300, thus, P(F  E ' ) = n(F E ' )/ N(S) 

              = 40/900 = 4/90 

also P(E') = n(E')/N(S) = 300/900 = 1/3 

Hence, P(F/E') = (4/90)/(1/3) = 12/90 
(ii) Required to find the probability that the selected person belongs to a 

club.  This may be rephrased as: " the selected person is employed 
given that s(h)e belongs to a club". 

Let C = event that the selected person belongs to a club. 
Thus,  required to find: P(E/C). 

Now, P(E/C) = P(E  C) /P(C),  and P (C) is the probability that : " a person 

belongs to a club and is employed" or " a person belongs to a club and   

s(h)e is unemployed" 
i.e. P (C)   =P [(E and C) or (E' and C)] = P [(E C)   (E' C)] 

 
Note: 

(i) The events (E and C)  and (E' and C) are mutually exclusive.   
Hence,  P [(E  C)   (E'  C)] = P (E  C) +  P(E'   C) 

  Therefore,  
 P (C) =  P (C E) +  P(C   E')  

  Hence, P(E/C) = P(E C) /P(C) 



    = P(E  C) / [ P (E C) +  P(E'  C)] -----------------------------

--(1) 
(ii) The result in equation (1) is known as :  Baye's Theorem", a useful 

tool in evaluating conditional probabilities. 
(iii)  The following multiplicative law is useful in simplifying Baye's 

theorem: 
P(E  C) = P(E). P(C/E) 

Similarly,  P(E'  C) = P(E'). P(C/E') 

Hence, equation (1) may as well be written as: 

P(E/C)  = P(E  C) / [ P (E C) +  P(E'  C)] 

   =  P(E). P(C/E) /[  P(E). P(C/E) + P(E '). P(C/E')] ………………………(2) 

Now, P (E C) = n(E C) /N(S) = 36/900,  

and P(E'   C) = n(E'   C)/N(S) =12/900 

Hence , using equation (1) we have: P(E/C) = (36/900)/[36/900 + 12/900] 
=3/4 

 
Example 5.8 

Tom is to travel from Kampala to Lira for an interview.  The probabilities that 
he will be on time for the interview given that he travels by bus and taxi are 

respectively 0.1 and 0.2.  The probability that he will travel by bus and taxi 

are respectively 0.6 and 0.4. 
(i) Find the probability that he will be on time 

(ii) Find the probability that he travelled by a taxi given that he is on time 
(iii) Find the probability that he travelled by bus given that he is not on 

time. 
 

Solution 
Let A = event that he travels by bus, P(A) = 0.6 

      B = event that he travels by taxi. P(B) = 0.4 
Let T = event that he is on time =? 

Given: P(T/A) = 0.1 and P(T/B) = 0.2 
Required to find P(T). 

Now T = event that: " he is on time and he has travelled by bus" or "he is 
on time and he has travelled by taxi" 

i.e. T = (T and A) or (T and B) 

        = (T    A)  (T  B) 

Hence, P(T) = P[(T   A)  (T  B)] 

But the events (T   A)  and  (T  B) are mutually exclusive events. 

Therefore, P(T) = P(T   A) +P (T  B) 

     = P(A).P(T/A) + P(B).P(T/B) 
     = (0.1 x 0.6) + ( 0.2 x 0.4) = 0.14 

(ii) Required to find the probability that he travelled by taxi given that he 
is on time 

 i.e. required to find P(B/T) 



 

Solution 
P(B/T) = P( B  T) / P(T) 

            = P(B T) / [ P (B  T) +  P( A   T)] 

   =  P(B). P(T/B) /[  P(B). P(T/B) + P(A). P(T/A)] 

            = (0.4 x 0.2)/[(0.4 x 0.2) + ( 0.6 x 0.1)] =8/14 
(iii) Required to find the probability that he travelled by bus given that he 

is not on time i.e. required to find P(B/T') 
Solution 

Now P(A/T') = P( A  T') / P(T') 

           = [P(A).P(T'/A)] /P(T') 

 But  P(T) + P(T') = 1.  Hence, P(T') = 1 - P(T) 
              = 1 - 0.14 = 0.86 

 and  P(T/A) + P(T'/A) = 1.  Hence, P(T'/A) =1 - P(T/A) 
               = 1 - 0.1 = 0.9 

 Therefore, P(A/T) = (0.6 x 0.9) /0.86 = 54/86 

6.4 Probability Tree Diagrams 

A probability tree is a diagram used to obtain probabilities of events, 

especially if there is picking with/without replacement, and if the events are 
conditional such that Baye's Theorem may be used.  The method is 

illustrated in the example below: 
 

Example  

A bag contains 2 white and 4 red balls.  Another bag contains 2 white balls 
and 1 red ball.   A ball is chosen  at random from the first bag and put in the 

second bag, and a ball is randomly selected from the second bag.  
(i) Find the probability that the selected ball from the second bag is white 

(ii) Find the probability that a white ball was transferred from the first bag 
given that a white ball was selected from the second bag. 

 

Solution 

Let W1 = white ball in bag1 and R1 = red ball in bag1 

Let W2 = white ball in bag2 and  R2 = red ball in bag2 

 

 

Bag 1    Bag 2  

The following is what happens after a ball is transferred from bag1 

2W1 

4R1 

2W2 

1R2 



 P(W1)=2/6 

 P(R1)=4/6 

     W1      P(W2/W1)=3/4  

    R1       P(R2/W1)=1/4  

 Bag1           P(W2/R1)=2/4 

            P(R2/R1)=2/4  

       Bag2 

Transferring a ball from bag1   Picking a ball from bag2 

 

           

        P(W2/W1)=3/4   

   

  P(W1)=2/6    P(R2/W1)=1/4 

     

     

   P(R1)=4/6      P(W2/R1)=2/4 

   

       P(R2/R1)=2/4 

(i) Required to find P(W2) 

P(W2) = P(W2 W1)  + P(W2  R1) 

 = P(W1).P(W2/W1) + P(R1).P(W2/R1) =(2/6 x ¾) + (4/6 x 2/4) 

=7/12 

2W1 

4R1 

3W2 

1R2 

2W2 

2R2 

2W

1 

4R1 

3W

2 

1R2 

2W

2 

2R2 

P(W2 W1) 

P(R2 W1) 

P(W2 R1) 

 

P(R2 R1) 

 



(ii) Required to find P(W1/W2) 

By definition P(W1/W2) = P(W1 W2) /P(W2) 

     = P(W1).P(W2/W1) /[ P(W1).P(W2/W1) + P(R1).P(W2/R1)] 

      =( 6/24)/(7/12) = 3/7 

 

 Review Questions 

 

Question 1 
a) (i) What are the properties of probability?    

(ii) Find the probability that either a Club or a Spade is drawn in a 
single draw from a deck of cards       

b) Prove that for any event A P(Ac) = 1 – P(A)    
c) Given that Events A, B and C are mutually exclusive with the 

probabilities  
(A) = 0.2, P(B) = 0.3 and P(C) = 0.2 

Find: 
i) P (A )        

ii) P(BUC)       
iii) P(AUC )       

iv) P(AUBUC)      

 
Question 2 

a) Write brief notes on the following: - 
(i) Mutually exclusive events    

(ii) Independent events     
(iii) Complementary events     

b) Three Coins are tossed simultaneously.  Determine the probability of 
getting more than one Head.      

c) Jack and Jill sell Insurance in a family business.  Jack sells 80% of the 
policies and Jill sells 20%.  Of the 80% policies sold by Jack, 10% of 

the policyholders file a claim, and of the 20% policies sold by Jill 25% 
of the policyholders file a claim in a year.  A client announces his 

intention to file a claim.  What is the probability that Jack sold him the 
policy [p(Jack/Claim)]  

 

Question 3 
a) List three (3) properties of probability     

b) Distinguish between Mutual events and Independent events 
c) Two Workers A and B assemble parts of a production plant.  The 

probability that Worker A makes a mistake is 0.02 and the 
probability that Worker B makes a mistake is 0.03.  However, 

Worker A assembles 55% of the parts and Worker B assembles 



45% of the parts.  An assembled part is selected randomly and 

is found to be defective.  What is the probability that Worker B 
assembles it?  

 
Question 4 

a) Let A and B be events with P (A) = 3/8, P (B) = ½, and P (A  

  B) = ¼   

  Find: 
i. P(A B)        

ii. P(A’) and P(B’)       
iii. P(A’ B’)        

iv. P(A’ B’)        

v. P(A  B’)        

vi. P(B  A’)        

b) Find the number of permutations of letters in the word 

STATISTICS.  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit 7 

Probability Distribution and Random variables   

 
7.1 Introduction  

 
Probability distributions are related to frequency distributions.  Probability 

distributions may be thought of as theoretical frequency distributions 
 

A probability distribution is similar to the frequency distribution of a 
quantitative population because both provide a long-run frequency for 

outcomes. In other words, a probability distribution is listing of all the 
possible values that a random variable can take along with their 

probabilities.  
 

Example 6.1: 

Suppose we want to find out the probability distribution for the number of 
heads on three tosses of a coin: 

First toss.........T T T T H H H H 
Second toss.....T T H H T T H H 

Third toss........T H T H T H T H 
 

the probability distribution of the above experiment is as follows (columns 1, 
and 2 in the following table) 

 
(Column1)......................(Column2)..............(Column3) 

Number of heads...............Probability.................(1)(2) 
 

X.....................................P(X)..........................(X)P(X) 
0......................................1/8................................0.0 

1......................................3/8................................0.375 

2......................................3/8................................0.75 
3......................................1/8................................0.375 

Total.....................................................................1.5 = E(X) 
 

Note: 
(i) In probability distribution we describe how outcomes in an experiment 

are expected to vary using probabilities instead of frequencies 
(ii) Because these distributions deal with expectations, they are useful 

models in making inferences and decisions under conditions of 
uncertainty. 

(iii) The main difference between frequency distributions and probability   
distributions is that a frequency distribution is a listing of observed 

frequencies of all outcomes of an experiment that actually occurred 



when the experiment was done, whereas a probability distribution is a 

listing of all the probabilities of all possible outcomes that could result 
when the experiment was done. 

 
A variable is said to be random if it takes on different values as the result 

of the outcomes of a random experiment. 
 

In a discrete probability distribution the random variable is allowed to 
take on countable values. 

 
In a continuous probability distribution, the random variable is allowed 

to take on values within an interval (the values are infinite). 

7.2 Construction of Probability Distributions 
 

Example 6.2 

An urn contains 4 red balls and 3 black balls.  2  balls are drawn in 

succession without replacement.  Construct the probability distribution for 
the number of red balls in the sample of the 2 balls drawn. 

Solution 
Let R = red ball, B = black ball  

   
 

 
 

 
 

Hence, P(R) = 4/7, P(B) = 3/7 
The following are the possible number of red balls in the sample of the 2 

balls drawn: RR, RB, BR, BB 
Hence the sample points in the sample space S are :RR, RB, BR, BB 

i.e.  S = {RR, RB, BR, BB} 

Let X be the random variable of the number of red balls in the sample of the  
2 balls drawn. 

Then X takes on values: x = 2, 1, 1, 0 
i.e. for S = {RR, RB, BR, BB} 

 x =    2,    1,    1,    0 
 

 
 

 
 

 
 

4 R 

3 B 



Possible outcomes from the experiment 

 

1st ball           
2nd ball 

Number of red 
balls in Sample 

of 2 balls 

Probability of the four 
possible outcomes 

R                      

R 
R                      

B 
B                      

R 

B                      
B 

2 

1 
1 

0 

4/7 x 4/7 = 16/49 

4/7 x 3/7 = 12/49 
3/7 x 4/7 = 12/49 

3/7 x 3/7 = 9/49 

  Sum:           1.00 

 

Hence probability distribution is : 
 

X 0                              1                                              

2 

P(X = 

x) 

9/49                      (12/49 + 12/49) = 24/49             

16/49 

 

 

Mathematical Expectations   

 
Let  X  be a discrete random variable with the following probability 

distribution 
X  x1    x2      x3    ---   xn   

f(X=x) f(x1)  f(x2)  f(x3)  --- f(xn ) 

 
The expected value of  a random variable X  or the mathematical 

expectation of  X is denoted by  E(X) and is defined  by: 

 E(X) =      
n

=i

ii

n

=i

ii x=PXPx=XEorxfx
11

  

 
The variance of the random variable  X is denoted by  Var.(X) and is 

defined by  

 Var.(X) =     2
1

2 XExfx
n

=i

ii   

 
The standard deviation of the random variable  X is denoted by  

s =  Var.(X) and is defined by  



 s =     2
1

2 XExfx
n

=i

ii   

 
Example  For example 6.1, the mathematical expectation is 

computed as shown below: 
(Column 1)......................(Column 2)..............(Column 3)……(Column 

4)…(Column 5) 
Number of 

heads...............Probability.................(1)(2)……………..(1)2……….(2)(4) 
 

X.....................................P(X)..........................(X)P(X)………………X2…….. 
X2P(X) 

0......................................1/8................................0.0…………………..0……

……0.0 
1......................................3/8................................0.375………………...1…

………0.375 
2......................................3/8................................0.75…………………..4……

….. 1..5 
3......................................1/8................................0.375…………………9……

……1.125 
Total.....................................................................1.5 = 

E(X)………………………..3.000   
         = Var(X) 

 

i.e., Expected value, E(X) =      
n

=i

ii

n

=i

ii x=PXPx=XEorxfx
11

 = 1.5  

Variance, Var.(X) =     2
1

2 XExfx
n

=i

ii   = 3.0 – (1.5)2 = 3.0 – 2.25 = 0.75 

Standard deviation = (0.75) 

Example  
 

Suppose a charity organization is mailing printed return-address stickers to 
over one million homes.  Each recipient is asked to donate either $1, $2, $5, 

$10, $15, or $20. Based on past experience, the amount a person donates is 
believed to follow the following probability distribution: 

 
X:..... $1......$2........$5......$10.........$15......$20 

P(X)....0.1.....0.2.......0.3.......0.2..........0.15.....0.05 
 

The question is, what is expected that an average donor to contribute, and 
what is the standard devation.  



Solution 

The solution is as follows. 
 

 
(1)......(2).......(3).............(4)..................(5).........................................

.(6) 
X......P(X)....X.P(X).......(X - )......[(X - )]2………………..............(5)x(2) 

1.......0.1......0.1...........- 
6.25...............39.06........................................3.906 

2.......0.2......0.4...........- 
5.25...............27.56........................................5.512 

5.......0.3......1.5...........- 
2.25.................5.06........................................1.518 

10.....0.2......2.0.............2.75.................7.56........................................
1.512 

15.....0.15....2.25...........7.75...............60.06........................................9

.009 
20.....0.05....1.0...........12.75.............162.56.........................................

8.125 
Total...........7.25 = 

E(X)....................................................................29.585 
 

Thus, the expected value is $7.25, and standard deviation is the square root 
of $29.585, which is equal to $5.55. In other words, an average donor is 

expected to donate $7.25 with a standard deviation of $5.55. 
 

Example 6.5: 
A committee of 3 LC officials is to be formed from 4 men and 3 women of 

Rubaga Division to represent that division on Kampala City Council.  If X is 
the random variable of the number of men on the committee, find the 

expected number of men on the committee, and the standard deviation of 

this number.(Correct all the answers to one whole number).   
 

Solution 
The probability distribution of X is given by: 

P(X = x) = 4Cx
 . 3C3 -x / 7C3 , x = 0, 1, 2, 3.(it can be proved) 

The student (need to know about permutations/combinations and 

factorials) 

 



Hence, 

X    0       1         2        
3 

P(X=x) 
 

35

1
    

35

12
    

35

18
    

35

4
 

  

Expectation,  E(X) =  
4

1=i

iX=XXP  

     = 
































35

4
3

35

18
2

35

12
1

35

1
0 +++  = 1.71  

     = 2 ( to the nearest whole number) 

Variance, Var.(X) =     2
1

2 XEX=XPX
n

=i

ii
  

       = 
































35

4
3

35

18
2

35

12
1

35

1
0 222 +++  - (1.71)2

 = 0.51  

        = 1(to the nearest whole number) 

standard deviation =  xvar  = 0.71 = 1 ( to the nearest whole number) 

 

 
Example  

3 coins are tossed.  A man gets 5 shillings when all heads or all tails appear 
and he pays 3  shillings if either  1 or 2 head(s) show.  What is his average 

gain or loss? 
Sample space for a single coin,   S  = {h,t}.  The sample space for the 2 

coins is computed as shown in the table below: 

Solution 

 

 

1st coins 

 
h           t 

              h 

 

2ndcoin  t 

hh         ht 

 

th          tt 

Sample space for 2 coins, S = {hh, ht, th, tt} 

The sample space for the 3 coins is computed as shown in the table below: 



 

 

First two coins 

  
hh         ht        th       

tt 

             h 

 
3rdcoin  t 

hhh       hht       hth     

htt  
      

thh        tht        tth      
ttt  

Sample space for the 3 coins is 

S = 













ww,w,w,w,w,w,w,

ttttth,tht,thh,htt,hth,hht,hhh, , where w is the weight.   

Hence,  8w = 1 , w = 
8

1
 

 











8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

ttttth,tht,thh,htt,hth,hht,hhh,

S

 

Let A = event : all heads appear,     A = 

















8

1

hhh ,  P(A) = 
8

1
 

Let B = event: all tails appear,    B = 

















8

1

ttt  ,  P(B) = 
8

1
.    

Let C = event: one head appears,   













8

1

8

1

8

1

tth,tht,hht,

C

 P(C) = 
1

8
 + 

1

8
 + 

1

8
 = 

8

3
 

Let D = event: two heads appear,  
D =  

8

1

8

1

8

1

tth,tht,hht,  

P(D) = 
8

1
 + 

8

1
 + 

8

1
 = 

8

3
 

Hence,  P(either all heads or all tails appear) = P(A or B)  = P(A B) 

Since A and B are mutually exclusive events, P(A or B) = P(A U B) = P(A) 
+P(B)  

 =  
8

1
 + 

1

8
 =  

8

2
 =  

4

1
 

P(either  1 or  2 heads show) = P(C or D)  = P(C  D) =  P(C) + P(D), since  

C and D are mutually exclusive events. 
 

P(CorD = P(C  D) = P(C) + P(D) 

         = 
3

8
 +

8

3
   =  

6

8
 =  

4

3
  

 

Let  X be the random variable of the  amount he gains  
 

Hence,   X takes on values  x = 5 or x  = -3 
 

Hence the probability distribution of X is: 

P(X = 5) = 
4

1
, P(X=-3) = 

4

3
 

 

E(X) =   x=XXP  

 = -3 
















4

1
5

4

3
+  = -1 



 

Hence, on the average his total loss is +1 
 

Example  
A box contains 10 coloured discs of which two are red.  A man pays 10 

shillings to play a game in which discs are drawn one at a time without 
replacement.. He will receive 25 shillings if the first disc drawn is red, 20 

shillings if the second disk drawn is red, and 5 shillings if the third disc 
drawn is red but nothing otherwise. 

Find the man’s expected profit or loss in any game. 
 

Solution:  
 If the random variable X is the amount in shillings received in any game, 

then  X takes on values 25,20,5,and 0. 

P(X = 25) = Prob(1st disc is red) = 
5

1

10

2
=  

P(X = 20) = Prob(2nd disc is red )= 
45

8

9

2

10

8
=x  

P(X = 5) = Prob(3rd disc is red) = 
45

7

8

2

9

7

10

8
=xx  

P(X = 0) = Prob (1st 3 discs are not  red) = 1- 








45

7

45

8

5

1
++ = 1- 









25

24
 = 

25

21
 

Hence probability distribution of X is: 

 

X 0 5 20 25 

P(X = 
x) 45

21

 

45

7
 

45

8
 

5

1
 

E(X) =   x=XXP  

 = 0.P(X = 0) + 5.P(X = 5) + 20.P(X= 20) + 25.P(X = 25) 



 = 0 + 5 
























5

1

45

8
20

45

7
++  = 

5

25

45

160

9

39
++  

 = 
5

25

9

39
+ = 

3

1
9

9

3
9

9

84
5

9

39
===+  

Since the man pays 10 shillings for the game,  his expected loss is = 10 - 

3

1
9   

= 10 - 
3

2

3

2830

3

28
==


 shillings 

7.3 Binomial Distribution 

One of the most widely known of all discrete probability distributions is the 
binomial distribution. Several characteristics underlie the use of the binomial 

distribution. 

 
Characteristics of the Binomial Distribution: 

 The experiment consists of n identical trials. 
 Each trial has only one of the two possible mutually exclusive 

outcomes, success or a failure. 
 The probability of each outcome does not change from trial to trial, 

and 
 The trials are independent, thus we must sample with replacement. 

 
Note 

If the sample size, n, is less than 5% of the population, the independence 
assumption is not of great concern. Therefore the acceptable sample size 

for using the binomial distribution with samples taken without 
replacement is [n<5% N] where n is equal to the sample size, and N 

stands for the size of the population. The birth of children (male or 

female), true-false or multiple-choice questions (correct or incorrect 
answers) are some examples of the binomial distribution. 

 
BinomialEquation 

When using the binomial formula to solve problems, all that is necessary is 
that we be able to identify three things:  

 
 the number of trials (n) 

 the probability of a success on any one trial (p), and  
 The number of successes desired (x).  

 
The formulas used to compute the probability, the mean, and the standard 

deviation of a binomial distribution are as follows. 



 

If X is binomially distributed with n trial and r successes with probability of 
succeeding p then: 

 P(X = x) = xnqxp
xxn

n 

 !)!(

!
, for x = 0, 1, 2, ..., n 

   
where: n = the sample size or the number of trials, x = the number of 

successes desired,  
p = probability of getting a success in one trial, and q = (1 - p) = the 

probability of getting a failure in one trial. 
 

In general  n! = n(n - 1)(n - 2)(n - 3)...3x2x1 
 

Note: 
 E(X)=  = np, and Var(X) = 2 = npq are the expected value(mean) and 

variance respectively of X. 
 

Example  

Let's go back to Unit 5 and solve the probability problem of defective TVs by 
applying the binomial equation once again. We said, suppose that 4% of all 

TVs made by W&B Company in 1995 are defective. If eight of these TVs are 
randomly selected from across the country and tested, what is the 

probability that exactly three of them are defective? Assume that each TV is 
made independently of the others. 

 
In this problem, n=8, x=3, p=0.04, and q=(1-p)=0.96. Plugging these 

numbers into the binomial formula (see the above equation) we get: 
 

P(X = 3) = 5)96.0(3)04.0(
!3)!38(

!8


, for x = 0, 1, 2, ..., 8 

 
 P(X=3) = P(3) = 0.0003 or 0.03% , which is the same answer as in Unit 5.  

 
The mean is equal to (n) x (p) = (8)(0.04)=0.32, the variance is equal to 

np (1 - p) = (0.32)(0.96) = 0.31, and the standard deviation is the square 

root of 0.31, which is equal to0.6. 
 

The Binomial Table 
Mathematicians constructed a set of binomial tables containing presolved 

probabilities. Binomial distributions are a family of distributions. In other 
words, every different value of n and/or every different value of p gives a 

different binomial distribution. Tables are available for different combinations 
of n and p values. For the tables, refer to the text. Each table is headed by a 



value of n, and values of p are presented in the top row of each table of size 

n. In the column below each value of p is the binomial distribution for that 
value of n and p. The binomial tables are easy to use. Simply look up n and 

p, then find X (located in the first column of each table), and read the 
corresponding probability. The following table is the binomial probabilities for 

n = 6. Note that the probabilities in each column of the binomial table must 
add up to 1.0. 

 
 

 
 
 

Binomial Probability Distribution Table 
(n = 6) 

 

---------------------------------------------------------------------------------------- 

Probability 

X.....0.1........0.2.....0.3.....0.4.....0.5.....0.6.....0.7.....0.8.....0.9 

-------------------------------------------------------------------------------------- 

0.....0.531............0.118....................................................0.000 

1.....0.354............0.303....................................................0.000 

2.....0.098............0.324....................................................0.001 

3.....0.015............0.185....................................................0.015 

4.....0.001............0.060....................................................0.098 

5.....0.000............0.010....................................................0.354 

6.....0.000............0.001....................................................0.531 

-------------------------------------------------------------------------------------- 

 

Example  

Suppose that an examination consists of six true and false questions, and 
assume that a student has no knowledge of the subject matter. The 

probability that the student will guess the correct answer to the first 
question is 30%. Likewise, the probability of guessing each of the remaining 

questions correctly is also 30%. What is the probability of getting more than 
three correct answers? 

 

Solution 
For the above problem, n = 6, p = 0.30, and X >3. In the above table, 

search along the row of p values for 0.30. The problem is to locate the P(X > 
3). Thus, the answer involves summing the probabilities for X = 4, 5, and 6. 

These values appear in the X column at the intersection of each X value and 
p = 0.30, as follows: 
P (X > 3) = Summation of {P (X=4) + P(X=5) +P(X=6)} = (0.060)+(0.010)+(0.001) = 0.071 or 

7.1% 



 

Thus, we may conclude that if 30% of the exam questions are answered by 
guessing, the probability is 0.071 (or 7.1%) that more than four of the 

questions are answered correctly by the student. 
 

 
Graphing the Binomial Distribution 

The graph of a binomial distribution can be constructed by using all the 
possible X values of a distribution and their associated probabilities. The X 

values are graphed along the X axis, and the probabilities are graphed along 
the Y axis. Note that the graph of the binomial distribution has three shapes: 

If p<0.5, the graph is positively skewed, if p>0.5, the graph is 
negatively skewed, and if p=0.5, the graph is symmetrical.  The 

skewness is eliminated as n gets large. In other words, if n remains constant 
but p becomes larger and larger up to 0.50, the shape of the binomial 

probability distribution becomes more symmetrical. If p remains the same 

but n becomes larger and larger, the shape of the binomial probability 
distribution becomes more symmetrical. 
 

The Poisson Distribution 
The poisson distribution is another discrete probability distribution. It is 

named after Simeon-Denis Poisson (1781-1840), a French mathematician. 
The poisson distribution depends only on the average number of occurrences 

per unit time of space. There is no n, and no p. The poisson probability 
distribution provides a close approximation to the binomial probability 

distribution when n is large and p is quite small or quite large. In other 
words, if n>20 and np<=5 [or n(1-p)<="5]," then we may use poisson 

distribution as an approximation to binomial distribution. for detail 
discussion of the poisson probability distribution, refer to any statistics  

textbook. 
 

The Hyper-geometric Distribution 

Another discrete probability distribution is the hypergeometric distribution. 
The binomial probability distribution assumes that the population from which 

the sample is selected is very large. For this reason, the probability of 
success does not change with each trial. The hypergeometric distribution is 

used to determine the probability of a specified number of successes and/or 
failures when: 

 
(1) a sample is selected from a finite population without replacement and/or  

(2) when the sample size, n, is greater than or equal to 5% of the 
population size,  

     N, i.e., [  n>=5% N]. 
 



7.4 Normal Distribution or Normal Curve 

Normal distribution is probably one of the most important and widely used 

continuous distributions. It is known as a normal random variable, and its 
probability distribution is called a normal distribution. The following are the 

characteristics of the normal distribution: 
 

Characteristics of the Normal Distribution: 

1. It is bell shaped and is symmetrical about its mean. 
2. It is asymptotic to the axis, i.e., it extends indefinitely in either direction 

from the mean. 

3. It is a continuous distribution. 
4. It is a family of curves, i.e., every unique pair of mean and standard 

deviation defines a different normal distribution. Thus, the normal 
distribution is completely described by two parameters: mean and standard 

deviation. See the following figure. 
5. Total area under the curve sums to 1, i.e., the area of the distribution on 

each side of the mean is 0.5. 
6. It is unimodal, i.e., values mound up only in the center of the curve. 

7. The probability that a random variable will have a value between any two 
points is equal to the area under the curve between those 



points.  

Figure 6.3 

 
Note that the integral calculus is used to find the area under the normal 

distribution curve. However, this can be avoided by transforming all normal 
distribution to fit the standard normal distribution. This conversion is done 

by rescaling the normal distribution axis from its true units (time, weight, 
dollars, and...) to a standard measure called Z score or Z value. A Z score 

is the number of standard deviations that a value, X, is away from the 
mean. If the value of X is greater than the mean, the Z score is positive; if 

the value of X is less than the mean, the Z score is negative. The Z score or 

equation is as follows: 
Z = (X - Mean) /Standard deviation 

That is,   Z = 


X
 

A standard Z table can be used to find probabilities for any normal curve 



problem that has been converted to Z scores. For the table, refer to any 

statistics  textbook.  
 

The Z distribution is a normal distribution with a mean of 0 and a standard 
deviation of 1. 

 
The following steps are helpful when working with the normal curve 

problems: 
 

1. Graph the normal distribution, and shade the area related to the 
probability you want to find. 

2. Convert the boundaries of the shaded area from X values to the standard 
normal random variable Z values using the Z formula above. 

3. Use the standard Z table to find the probabilities or the areas related to 
the Z values in step 2. 

 

Example 6.1: 
Graduate Management Aptitude Test (GMAT) scores are widely used by 

graduate schools of business as an entrance requirement. Suppose that in 
one particular year, the mean score for the GMAT was 476, with a standard 

deviation of 107. Assuming that the GMAT scores are normally distributed, 
answer the following questions: 

 
a) What is the probability that a randomly selected score from this GMAT 

falls between 476 and 650? <= x <="650)" 
b) What is the probability of receiving a score greater than 750 on a 

GMAT test that has a mean of 476 and a standard deviation of 107? 
i.e., P(X >= 750) =? 

c) What is the probability of receiving a score of 540 or less on a GMAT 
test that has a mean of 476 and a standard deviation of 107? i.e., P(X 

<= 540)="?." 

d) What is the probability of receiving a score between 440 and 330 on a 
GMAT test that has a mean of 476 and a standard deviation of 107? 

 
Solutions 

 
a). What is the probability that a randomly selected score from this GMAT 

falls between 476 and 650? <= x <="650)"  
 

The following figure shows a graphic representation of this problem. 



 
Figure 6.4 
 

Applying the Z equation, we get: 
 Z = (650 - 476)/107 = 1.62.  

 
The Z value of 1.62 indicates that the GMAT score of 650 is 1.62 standard 

deviation above the mean. The standard normal table gives the probability 
of value falling between 650 and the mean. 

 
Note: 

The whole number and tenths place portion of the Z score appear in 
the first column of the table. Across the top of the table are the values 

of the hundredths place portion of the Z score. Thus the answer is that 
0.4474 or 44.74% of the scores on the GMAT fall between a score of 

650 and 476.  
 

b) What is the probability of receiving a score greater than 750 on a GMAT 

test that has a mean of 476 and a standard deviation of 107? i.e., P(X >= 
750) = ?.  

 
Solution 

This problem is asking for determining the area of the upper tail of the 
distribution.  

 
The Z score is:  

Z = ( 750 - 476)/107 = 2.56. 
 

From the table, the probability for this Z score is 0.4948. This is the 
probability of a GMAT with a score between 476 and 750.  

 
Note: 

The rule is that when we want to find the probability in either tail, we 

must substract the table value from 0.50. Thus, the answer to this 
problem is: 0.5 - 0.4948 = 0.0052 or 0.52%. Note that P(X >= 750) is 



the same as P(X >750), because, in continuous distribution, the area 

under an exact number such as X=750 is zero.  
 

The following figure shows a graphic representation of this problem. 

 
Figure 6.5 
 

c) What is the probability of receiving a score of 540 or less on a GMAT test 
that has a mean of 476 and a standard deviation of 107? i.e., P(X <= 

540)="?."  
 

Solution: 
We are asked to determine the area under the curve for all values less than 

or equal to 540. the z score is: 
 z="(540" 476)/107="0.6." 

 From the table, the probability for this z score is 0.2257 which is the 
probability of getting a score between the mean (476) and 540.  

Note: 

The rule is that when we want to find the probability between two values of 
x on either side of the mean, we just add the two areas together. Thus, the 

answer to this problem is: 0.5 + 0.2257 = 0.73 or 73%.  
The following figure shows a graphic representation of this problem. 

 
Figure 6.6 

 



d) What is the probability of receiving a score between 440 and 330 on a 

GMAT test that has a mean of 476 and a standard deviation of 107? i.e., 
P(330 < X <440) 

 
Solution: 

 
Figure 6.7 
In this problem, the two values fall on the same side of the mean. The Z 

scores are:  
Z1 = (330 - 476)/107 = -1.36,  

and  
Z2 = (440 - 476)/107 = -0.34.  

The probability associated with Z = -1.36 is 0.4131, and the probability 
associated with 

 Z = -0.34 is 0.1331.  
 

Note: 

The rule is that when we want to find the probability between two values of 
X on one side of the mean, we just subtract the smaller area from the larger 

area to get the probability between the two values. Thus, the answer to this 
problem is: 

 0.4131 - 0.1331 = 0.28 or 28%. 
 

Example 6.12: 
Suppose that a tire factory wants to set a mileage guarantee on its new 

model called LA 50 tire. Life tests indicated that the mean mileage is 47,900, 
and standard deviation of the normally distributed distribution of mileage is 

2,050 miles. The factory wants to set the guaranteed mileage so that no 
more than 5% of the tires will have to be replaced.  

 
What guaranteed mileage should the factory announce? i.e., P(X <= 

?)="5%. 

 
Solution 



In this problem, the mean and standard deviation are given, but X and Z are 

unknown. The problem is to solve for an X value that has 5% or 0.05 of the 
X values less than that value. If 0.05 of the values are less than X, then 0.45 

lie between X and the mean (0.5 - 0.05), see the following graph. 

 
Figure 6.8 
 

Note: 
Refer to the standard normal distribution table and search the body of the 

table for 0.45. Since the exact number is not found in the table, search for 

the closest number to 0.45. There are two values equidistant from 0.45-- 
0.4505 and 0.4495. Move to the left from these values, and read the Z 

scores in the margin, which are: 1.65 and 1.64. Take the average of these 
two Z scores, i.e., (1.65 + 1.64)/2 = 1.645. Plug this number and the values 

of the mean and the standard deviation into the Z equation, you get: 
 

Z =(X - mean)/standard deviation or -1.645 =(X - 
47,900)/2,050 = 44,528 miles. 

 
Thus, the factory should set the guaranteed mileage at 44,528 miles if 

the objective is not to replace more than 5% of the tires. 
 

 
The Normal Approximation to the Binomial Distribution 

Earlier, we talked about the binomial probability distribution, which is a 

discrete distribution. You remember that we said as sample sizes get larger, 
binomial distribution approach the normal distribution in shape regardless of 

the value of p (probability of success). For large sample values, the binomial 
distribution is cumbersome to analyze without a computer. Fortunately, the 

normal distribution is a good approximation for binomial distribution 
problems for large values of n. The commonly accepted guidelines for using 

the normal approximation to the binomial probability distribution is when (n 
x p) and [n(1 - p)] are both greater than 5. 

 
Example 6.13: 



Suppose that the management of a restaurant claimed that 70% of their 

customers returned for another meal. In a week in which 80 new (first-time) 
customers dined at the restaurant, what is the probability that 60 or more of 

the customers will return for another meal?, ie., P(X >= 60) =?. 
 

Solution 
The solution to this problem  can be illustrated as follows: 

 
 First, the two guidelines that (n x p) and [n(1 - p)] should be greater 

than 5 are satisfied: (n x p) = (80 x 0.70) = 56 > 5, and [n(1 - p)] = 
80(1 - 0.70) = 24 > 5.  

 Second, we need to find the mean and the standard deviation of the 
binomial distribution. The mean is equal to (n x p) = (80 x 0.70) = 56 

and standard deviation is square root of [(n x p)(1 - p)], i.e., square 
root of 16.8, which is equal to 4.0988. 

 

Using the Z equation we get,  
Z = (X - mean)/standard deviation = (59.5 - 56)/4.0988 = 0.85.  

From the table, the probability for this Z score is 0.3023 which is the 
probability between the mean (56) and 60. We must substract this table 

value 0.3023 from 0.5 in order to get the answer, i.e., P(X >= 60) = 0.5 -
0.3023 = 0.1977. Therefore, the probability is 19.77% that 60 or more of 

the 80 first-time customers will return to the restaurant for another meal. 
See the following graph. 

 
Figure 6.9 
 

Correction Factor 
The value 0.5 is added or subtracted, depending on the problem, to the 

value of X when a binomial probability distribution is being approximated by 
a normal distribution. This correction ensures that most of the binomial 

problem's information is correctly transferred to the normal curve analysis. 
This correction is called the correction for continuity. The decision as to how 

to correct for continuity depends on the equality sign and the direction of the 
desired outcomes of the binomial distribution. The following table shows 



some rules of thumb that can help in the application of the correction for 

continuity, see the above example. 
 

Value Being Determined..............................Correction 
X >................................................+0.50 

X > =..............................................-0.50 
X <.................................................-0.50 

X <=............................................+0.50 
<= X <="...................................-0.50" & +0.50 

 
<........................................+0.50>X =.............................................-

0.50 & +0.50 
 

 

 Review Questions 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit 8   

Inferential Statistics, Sampling and Sampling distribution 
 

 

Definition 
The distribution of all possible sample means and their related probability is 

called the sampling distribution of the means. 

 

Properties of the Sampling Distribution of Means 

If a population is normally distributed, then: 
 

1. The mean of the sampling distribution of means equals the population 
mean. 

2. The standard deviation of the sampling distribution of means (or standard 
error of the mean) is smaller than the population standard deviation, see the 

following equations 

 
For example, from the above table, the mean of the means is equal to 8% 

which is same as the population mean, and standard error of the mean is 
equal to 3.26% which is less than the population standard deviation of 

8.15%. 
 

 
Central Limit Theorem 

If a random sample of n observation is selected from any population, then, 

when the sample size is sufficiently large (n>=30) the sampling distribution 
of the mean tends to approximate the normal distribution. The larger the 

sample size, n, the better will be the normal approximation to the sampling 
distribution of the mean. Then, again in this case it can be shown that the 

mean of the sample means is same as population mean, and the standard 
error of the mean is smaller than the population standard deviation, see the  

equation above.  
 

……………………………………………….. (1) 



The real advantage of the central limit theorem is that sample data drawn 

from populations not normally distributed or from populations of unknown 
shape also can be analysised by using the normal distribution, because the 

sample means are normally distributed for sample sizes of n>=30. 
 

Column 1 of the following figure shows four different population 
distributions. Each ensuing column displays the shape of the distribution of 

the sample means for a particular sample size. Note that the distribution of 
the sample means begins to approximate the normal curve as the sample 

size, n, gets larger. 
 

 
Figure  

 
Since the central limit theorem states that sample means are normally 

distributed regardless of the shape of the population for large samples and 



for any sample size with normally distributed population, thus sample means 

can be analysised by using Z scores. Recall: 

 
If sample means are normally distributed, the Z score equation applied to 

sample means would be: 

 
 

Example 6.15: 
You are the director of transporation safety.. You are concerned because the 

average highway speed of all trucks may exceed the 60 mph speed limit. A 
random sample of 120 trucks show a mean speed of 62 mph. Assuming that 

the population mean is 60 mph and population standard deviation is 12.5 
mph, find the probability of the average of the  

speed greater than or equal to 62 mph. 
 

In this problem, n= 120, the mean of the means = population mean = 60 
mph, and standard error of the mean = population standard deviation 

/square root of sample size = 12.5/10.95 = 1.14.  

 
Plugging these numbers into the Z score equation (equation 3) we get,  

 
Z = (62 - 60)/1.14 = 1.75. 

 
 From the standard normal distribution table, this Z value yields a probability 

of 0.4599. This is the probability of getting a mean between 62 mph and the 
population mean 60 mph. Therefore, the probability of getting a sample 

average speed grater than 62 mph is (0.5 - 0.4599) = 0.04. That is, 4% of 
the time, a random sample of 120 trucks from the population will yield a 

mean speed of 62 mph or more. The following figure shows the problem. 

………………………………………………………………..(2) 

……………………………………………………………(3) 



 
Figure 6.11 
 

Sampling From a Finite Population 
A finite population is a population which has a fixed upper bound. For 

example, there are 5,124 students enrolled in MBA.  In cases of a finite 
population, an adjustment is made to the Z equation for sample means 

(equation 3 above). The adjustment is called correction factor, or finite 
population multiplier. 

 
Correction Factor 

Note: 
A rule of thumb is that if sampling is done without replacement from a finite 

population and the sample size n is greater than 5% of the population size 
N, i.e., n/N>0.05, then the correction factor should be used to adjust the 

standard deviation ( or standard error) of the mean. Thus, the following Z 
equation is used when samples are drawn from finite population. 

 
 

 
Example 6.16: 

 
A production company's 250 hourly employees average 39.5 years of age, 

with a standard deviation of 9.3 years. If a random sample of 35 hourly 
employees is taken, what is the probability that the sample will have an 

average age less than 43 years? 

…………………………………………………….(4) 



In this problem, the population mean is 39.5, with a population standard 

deviation of 9.3. The sample size is 35 which is drawn from a finite 
population of 250. The sample mean is 43. The following graph shows the 

problem on a normal curve. 

 
Figure 6.11 
Using the Z equation with the correction factor (equation 4 ) gives a Z score 

of 2.39. From the standard normal distribution table, this Z value yields a 
probability of 0.4916. Therefore, the probability of getting a sample average 

age less than 43 years is (0.5 + 0.4916) = 0.9916 or 99.16%. Had the 

correction factor not been used, the Z value would have been 2.23, and the 
probability of getting a sample average age less than 43 years would have 

been 98.71%. 
 

8.2 Sampling Distribution of Sample Proportion 
Sample proportion is computed by dividing the number of items in a 

sample that possess the characteristic, X, by the number of items in 
the sample, n. 

 
 
The central limit theorem also applies to sample proportions in that the 

normal distribution approximates the shape of the distribution of sample 
proportion if (n x p) > 5 and [n (1 - p)] > 5, where p is the population 

proportion. 
The mean of sample proportion for all samples of size n randomly drawn 

from a population is p (the population proportion) and the standard 
deviation of the sampling distribution of sample proportions (or the standard 

error of the proportion) is the square root of (p . q)/n, where q = 1 - p. The 
Z equation for the sample proportion is as follows: 

…………………………………………………………..(5) 



 
 

Note that equation 6 is used when we are counting discrete items, such 
people or defectives, and we are interested in percentages or proportions. 

 
Example 6.17: 

Suppose that fourty-three percent of all the country households had a 
telephone-answering machine in 1994. Marie believes that this proportion 

may not be true for her state. If she takes a random sample of 600 

households and finds that only 135 have an answering machine, what is the 
probability of getting a sample proportion this small or smaller if the 

population proportion really is 0.43? 
 

For this problem, p = 0.43, n = 600, X = 135, and sample proportion = X/n 
= 135/600 = 0.23. Using equation 6, and solving for Z gives  

 
Z = (0.23 - 0.43)/square root of [(0.43) . (0.57)]/600 = - 10 

 
Almost all the area under the curve lies to the right of this Z value. The 

probability of getting this sample proportion or a smaller one is virtually 
zero. That is, the results obtained from this sample are almost too different 

from the 43% proportion for Marie to accept the national figure for her state. 
The following graph shows this problem. 

 
 

8.3 Hypothesis Test 

 
Setting up and testing hypotheses is an essential part of statistical inference. 

In order to formulate such a test, usually some theory has been put forward, 

……………………………………………………….(6) 

 

 

 

 

 

96) 



either because it is believed to be true or because it is to be used as a 

basis for argument, but has not been proved, for example, claiming that a 
new drug is better than the current drug for treatment of the same 

symptoms. 
 

In each problem considered, the question of interest is simplified into two 
competing claims / hypotheses between which we have a choice: 

 
the null hypothesis, denoted H0, against the alternative hypothesis, 

denoted H1.  
 

These two competing claims / hypotheses are not, however, treated on an 
equal basis, special consideration is given to the null hypothesis. We have 

two common situations: 
 

1) The experiment has been carried out in an attempt to disprove or 

reject a particular hypothesis, the null hypothesis, thus we give that 
one priority so it cannot be rejected unless the evidence against it is 

sufficiently strong.  
 

For example, H0: there is no difference in taste between coke and diet coke 
against H1: there is a difference. 

2) If one of the two hypotheses is 'simpler' we give it priority so that a 
more 'complicated' theory is not adopted unless there is sufficient 

evidence against the simpler one.  
 

For example, it is 'simpler' to claim that there is no difference in flavour 
between coke and diet coke than it is to say that there is a difference. 

 
The hypotheses are often statements about population parameters like 

expected value and variance, for example H0 might be that the expected 

value of the height of ten year old boys in the Ugandan population is not 
different from that of ten year old girls? A hypothesis might also be a 

statement about the distributional form of a characteristic of interest, for 
example that the height of ten year old boys is normally distributed within 

the Ugandan population? 
 

The outcome of a hypothesis test  is 'reject H0' or 'do not reject H0'. 
 

Null Hypothesis 

The null hypothesis, H0 represents a theory that has been put forward, 

either because it is believed to be true or because it is to be used as a basis 
for argument, but has not been proved.  



 

For example, in a clinical trial of a new drug, the null hypothesis might be 
that the new drug is no better, on average, than the current drug.  

We would write: 
  H0: there is no difference between the two drugs on average. 

 
Note: 

(i) We give special consideration to the null hypothesis. This is due to the 
fact that the null hypothesis relates to the statement being tested, 

whereas the alternative hypothesis relates to the statement to be 
accepted if / when the null is rejected. 

 (ii) The final conclusion once the test has been carried out is always given 
in terms of the null hypothesis. We either 'reject H0 in favour of H1' or 

'do not reject H0'; we never conclude 'reject H1', or even 'accept 
H1'. 

(iii) If we conclude 'do not reject H0', this does not necessarily mean that 

the null hypothesis is true, it only suggests that there is not sufficient 
evidence against H0 in favour of H1; rejecting the null hypothesis 

then, suggests that the alternative hypothesis may be true. 
 

Alternative Hypothesis 

The alternative hypothesis, H1, is a statement of what a statistical 

hypothesis test is set up to establish.  
 

For example, in a clinical trial of a new drug, the alternative hypothesis 
might be that the new drug has a different effect, on average, compared to 

that of the current drug.  
 

We would write: 
 

  H1: the two drugs have different effects, on average.  

 
The alternative hypothesis might also be that the new drug is better, on 

average, than the current drug.  
 

In this case we would write: 
 H1: the new drug is better than the current drug, on average. 

 
Note: 

(i) The final conclusion once the test has been carried out is always given 
in terms of the null hypothesis. We either 'reject H0 in favour of H1' or 

'do not reject H0'; we never conclude 'reject H1', or even 'accept H1'. 



(ii) If we conclude 'do not reject H0', this does not necessarily mean that 

the null hypothesis is true, it only suggests that there is not sufficient 
evidence against H0 in favour of H1; rejecting the null hypothesis 

then, suggests that the alternative hypothesis may be true. 
 

Simple Hypothesis 

A simple hypothesis is a hypothesis which specifies the population 

distribution completely. 
 

Examples: 
1. H0: X~Bi(100,1/2) i.e. p is specified 

2. H0: X~N(5,20) i.e.  and   are specified 

 

 

Composite Hypothesis 

A composite hypothesis is a hypothesis which does not specify the 

population distribution completely. 
 

Examples 
1. X~Bi(100,p) H1: p > 0.5 

2. X~N(0, ) H1:  unspecified 

 

 

8.4 Hypothesis Testing Errors 

 

Type I Error 

In a hypothesis test, a type I error occurs when the null hypothesis is 

rejected when it is in fact true; that is, H0 is wrongly rejected.  
 

For example, in a clinical trial of a new drug, the null hypothesis might be 
that the new drug is no better, on average, than the current drug; that is  

 
H0: there is no difference between the two drugs on average.  

A type I error would occur if we concluded that the two drugs produced 
different effects when in fact there was no difference between them. 

 
The following table gives a summary of possible results of any hypothesis 

test: 



  Decision  

  Reject H0 Don’t Reject 
H0 

Truth H0 Type I Error Right Decision 

 H1 Right 
Decision 

Type II Error 

 

Note: 
a) A type I error is often considered to be more serious, and therefore 

more important to avoid, than a type II error. The hypothesis test 
procedure is therefore adjusted so that there is a guaranteed 'low' 

probability of rejecting the null hypothesis wrongly; this 
probability is never 0. This probability of a type I error can be 

precisely computed as: 
 

i. P(type I error) = significance level =  

 

b) The exact probability of a type II error is generally unknown. 
 

(i) If we do not reject the null hypothesis, it may still be false (a type 
II error) as the sample may not be big enough to identify the 

falseness of the null hypothesis (especially if the truth is very close 

to hypothesis). 
(ii) For any given set of data, type I and type II errors are inversely 

related; the smaller the risk of one, the higher the risk of the other. 
(iii) A type I error can also be referred to as an error of the first kind. 

Type II Error 

In a hypothesis test, a type II error occurs when the null hypothesis H0, 

is not rejected when it is in fact false. 
 

For example, in a clinical trial of a new drug, the null hypothesis might be 
that the new drug is no better, on average, than the current drug; that is 

 
H0: there is no difference between the two drugs on average. 

 
A type II error would occur if it was concluded that the two drugs produced 

the same effect, that is, there is no difference between the two drugs on 

average, when in fact they produced different ones. 
 

 
Note: 

(i) A type II error is frequently due to sample sizes being too small. 
(ii) The probability of a type II error is symbolised by  and written:  



 

P(type II error) =   (but is generally unknown). 

 

(iii) A type II error can also be referred to as an error of the second kind. 
 

8.5 Test Statistic 

 

A test statistic is a quantity calculated from our sample of data. Its value is 
used to decide whether or not the null hypothesis should be rejected in the 

hypothesis test. 
 

The choice of a test statistic will depend on the assumed probability model 
and the hypotheses under question. 

 

Critical Value(s) 

The critical value(s) for a hypothesis test is a threshold to which the value 

of the test statistic in a sample is compared to determine whether or not the 
null hypothesis is rejected. 

 
The critical value for any hypothesis test depends on the significance level at 

which the test is carried out, and whether the test is one-sided or two-sided. 
 

Critical Region 

The critical region CR, or rejection region RR, is a set of values of the 

test statistic for which the null hypothesis is rejected in a hypothesis test; 
that is, the sample space for the test statistic is partitioned into two regions; 

one region (the critical region) will lead us to reject the null hypothesis H0', 
the other not. So, if the observed value of the test statistic is a member of 

the critical region, we conclude 'reject H0'; if it is not a member of the 
critical region then we conclude 'do not reject H0. 

 

Significance Level 

The significance level of a statistical hypothesis test is a fixed probability 

of wrongly rejecting the null hypothesis H0, if it is in fact true. 
It is the probability of a type I Error and is set by the investigator in 

relation to the consequences of such an error. That is, we want to make the 
significance level as small as possible in order to protect the null hypothesis 

and to prevent, as far as possible, the investigator from inadvertently 
making false claims. 



 

The significance level is usually denoted by  

 

Significance Level = P(type I error) =   

Note: 

Usually, the significance level is chosen to be = 0.05 = 5%. 
 

8.5 Review Questions  

Question 1 

Distinguish between the following terms 
(i) Null Hypothesis and Alternative Hypothesis   

(ii) Type I error and Type II error     
(iii) One-Tailed test and Two-Tailed test    

b) Explain the following terms 
(i) Upper tailed test      

(ii) Lower tailed test      
c) The Headmistress of a certain school claims that the mean height of 

her candidates is 2 meters.  To test this claim, a random sample of 10 
candidates was selected and the following summary statistics is obtained:  

x = 26, (x – x)2 = 210.6;  Test the Headmistress’ claim at 2% level of 

significance.  

 

 Review Questions 

 

Question 2 
a) Briefly explain the following 

i. Type I error 
ii. Type II error      

b) Distinguish between One-tailed test and Two-tailed test.  
c) The manager of a certain Bar in Kabalagala claims that 75% of 

his female customers take V & A.  To test this claim, a sample of 
90 female customers showed that 65 female customers take V & 

A.  Test this claim at 5% level of significance.     
 

Question 3 
(a)  Distinguish between the following terms 

(i) Null Hypothesis and Alternative Hypothesis  

(ii) Type I error and Type II error  
(iii) One-Tailed test and Two-Tailed test  

(b) The manger of a payless supermarket in Bugolobi claims that 85% of 
his customers take Sugar. To test the manager’s claim a random 



sample of 120 customers showed that 95 customers take sugar. Test 

this claim at 5% level of significance.  
 

Question 4 
(a) Distinguish between  

 (I) a null hypothesis and an alternative hypothesis 
 (ii) Type - I error and Type - II error 

 (iii)a one - tailed test and a two - tailed test 
(b) A company claims that the average life of a certain type of batteries is  

  = 21.5 hours. To test  this claim, a laboratory tests 6 batteries 

manufactured by this company and obtains the following : sample 

mean X =20, sample variance s2 = 10.  Using a 5% level of  ignificance 

determine whether or not the results indicate that the batteries of this 
type have a shorter life than claimed by the company. 

 
Question 5 

(a) (i) Distinguish between a One -  tailed test and a Two - tailed test 
     (ii) Define the following terms : 

 . Null hypothesis 
 . Alternative hypothesis 

 . Test Statistic 

(b) Just before a referendum , the movement supporters claim that 60% 
of the electorate support a movement type of governance whereas the 

multi-partysts claim that 80% of  the electorate support multiparty 
democracy. In an opinion poll 281 out of a random sample of 500 

voters state that they will vote for the movement type of governance. 
Decide whether there is sufficient evidence at the 5 % level to suggest 

that less than 60% of the electorate will vote the movement type of  
governance. 

  

 

 

 

 
 

 



Unit 9 

Sampling  
9.1 Introduction  

Sampling is that part of statistical practice concerned with the selection of a 
subset of individuals from within a population to yield some knowledge about 

the whole population, especially for the purposes of making predictions 
based on statistical inference. 

 
Researchers rarely survey the entire population for two reasons (Adèr, 

Mellenbergh, & Hand, 2008): the cost is too high, and the population is 
dynamic in that the individuals making up the population may change over 

time. The three main advantages of sampling are that the cost is lower, data 
collection is faster, and since the data set is smaller it is possible to ensure 

homogeneity and to improve the accuracy and quality of the data. 
 

Each observation measures one or more properties (such as weight, 

location, color) of observable bodies distinguished as independent objects or 
individuals. In survey sampling, survey weights can be applied to the data to 

adjust for the sample design. Results from probability theory and statistical 
theory are employed to guide practice. In business and medical research, 

sampling is widely used for gathering information about a population 
 

The sampling process comprises several stages: 
 Defining the population of concern 

 Specifying a sampling frame, a set of items or events possible to 
measure 

 Specifying a sampling method for selecting items or events from the 
frame 

 Determining the sample size 
 Implementing the sampling plan 

 Sampling and data collecting 

 
Population definition 

Successful statistical practice is based on focused problem definition. In 
sampling, this includes defining the population from which our sample is 

drawn. A population can be defined as including all people or items with the 
characteristic one wishes to understand. Because there is very rarely enough 

time or money to gather information from everyone or everything in a 
population, the goal becomes finding a representative sample (or subset) of 

that population. 
 

Sometimes that which defines a population is obvious. For example, a 
manufacturer needs to decide whether a batch of material from production is 

of high enough quality to be released to the customer, or should be 
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sentenced for scrap or rework due to poor quality. In this case, the batch is 

the population. 
Although the population of interest often consists of physical objects, 

sometimes we need to sample over time, space, or some combination of 
these dimensions. For instance, an investigation of supermarket staffing 

could examine checkout line length at various times, or a study on 
endangered penguins might aim to understand their usage of various 

hunting grounds over time. For the time dimension, the focus may be on 
periods or discrete occasions. 

 
In other cases, our 'population' may be even less tangible. For example, 

Joseph Jagger studied the behaviour of roulette wheels at a casino in Monte 
Carlo, and used this to identify a biased wheel. In this case, the 'population' 

Jagger wanted to investigate was the overall behaviour of the wheel (i.e. the 
probability distribution of its results over infinitely many trials), while his 

'sample' was formed from observed results from that wheel. Similar 

considerations arise when taking repeated measurements of some physical 
characteristic such as the electrical conductivity of copper. 

 
This situation often arises when we seek knowledge about the cause system 

of which the observed population is an outcome. In such cases, sampling 
theory may treat the observed population as a sample from a larger 

'superpopulation'. For example, a researcher might study the success rate of 
a new 'quit smoking' program on a test group of 100 patients, in order to 

predict the effects of the program if it were made available nationwide. Here 
the superpopulation is "everybody in the country, given access to this 

treatment" - a group which does not yet exist, since the program isn't yet 
available to all. 

 
Note also that the population from which the sample is drawn may not be 

the same as the population about which we actually want information. Often 

there is large but not complete overlap between these two groups due to 
frame issues etc. (see below). Sometimes they may be entirely separate - 

for instance, we might study rats in order to get a better understanding of 
human health, or we might study records from people born in 2008 in order 

to make predictions about people born in 2009. 
 

Time spent in making the sampled population and population of concern 
precise is often well spent, because it raises many issues, ambiguities and 

questions that would otherwise have been overlooked at this stage. 
 

Sampling frame 
In the most straightforward case, such as the sentencing of a batch of 

material from production (acceptance sampling by lots), it is possible to 
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identify and measure every single item in the population and to include any 

one of them in our sample. However, in the more general case this is not 
possible. There is no way to identify all rats in the set of all rats. Where 

voting is not compulsory, there is no way to identify which people will 
actually vote at a forthcoming election (in advance of the election). These 

imprecise populations are not amenable to sampling in any of the ways 
below and to which we could apply statistical theory. 

 
As a remedy, we seek a sampling frame which has the property that we can 

identify every single element and include any in our sample.[1] The most 
straightforward type of frame is a list of elements of the population 

(preferably the entire population) with appropriate contact information. For 
example, in an opinion poll, possible sampling frames include an electoral 

register and a telephone directory. 
 

9.2 Probability and nonprobability sampling 

A probability sampling scheme is one in which every unit in the population 
has a chance (greater than zero) of being selected in the sample, and this 

probability can be accurately determined. The combination of these traits 
makes it possible to produce unbiased estimates of population totals, by 

weighting sampled units according to their probability of selection. 
 

Example: We want to estimate the total income of adults living in a given 
street. We visit each household in that street, identify all adults living there, 

and randomly select one adult from each household. (For example, we can 
allocate each person a random number, generated from a uniform 

distribution between 0 and 1, and select the person with the highest number 
in each household). We then interview the selected person and find their 

income. People living on their own are certain to be selected, so we simply 
add their income to our estimate of the total. But a person living in a 

household of two adults has only a one-in-two chance of selection. To reflect 

this, when we come to such a household, we would count the selected 
person's income twice towards the total. (In effect, the person who is 

selected from that household is taken as representing the person who isn't 
selected.) 

 
In the above example, not everybody has the same probability of selection; 

what makes it a probability sample is the fact that each person's probability 
is known. When every element in the population does have the same 

probability of selection, this is known as an 'equal probability of selection' 
(EPS) design. Such designs are also referred to as 'self-weighting' because 

all sampled units are given the same weight. 
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Probability sampling includes: Simple Random Sampling, Systematic 

Sampling, Stratified Sampling, Probability Proportional to Size Sampling, and 
Cluster or Multistage Sampling. These various ways of probability sampling 

have two things in common: 
1. Every element has a known nonzero probability of being sampled and 

2. involves random selection at some point. 
 

Nonprobability sampling is any sampling method where some elements of 
the population have no chance of selection (these are sometimes referred to 

as 'out of coverage'/'undercovered'), or where the probability of selection 
can't be accurately determined. It involves the selection of elements based 

on assumptions regarding the population of interest, which forms the criteria 
for selection. Hence, because the selection of elements is nonrandom, 

nonprobability sampling does not allow the estimation of sampling errors. 
These conditions give rise to exclusion bias, placing limits on how much 

information a sample can provide about the population. Information about 

the relationship between sample and population is limited, making it difficult 
to extrapolate from the sample to the population. 

 
Example: We visit every household in a given street, and interview the first 

person to answer the door. In any household with more than one occupant, 
this is a nonprobability sample, because some people are more likely to 

answer the door (e.g. an unemployed person who spends most of their time 
at home is more likely to answer than an employed housemate who might 

be at work when the interviewer calls) and it's not practical to calculate 
these probabilities. 

 
Nonprobability Sampling includes: Accidental Sampling, Quota Sampling and 

Purposive Sampling. In addition, nonresponse effects may turn any 
probability design into a nonprobability design if the characteristics of 

nonresponse are not well understood, since nonresponse effectively modifies 

each element's probability of being sampled. 
 

9.3 Sampling methods 

Within any of the types of frame identified above, a variety of sampling 

methods can be employed, individually or in combination. Factors commonly 
influencing the choice between these designs include: 

 Nature and quality of the frame 
 Availability of auxiliary information about units on the frame 

 Accuracy requirements, and the need to measure accuracy 
 Whether detailed analysis of the sample is expected 

 Cost/operational concerns 
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Simple random sampling 
In a simple random sample ('SRS') of a given size, all such subsets of the 

frame are given an equal probability. Each element of the frame thus has an 
equal probability of selection: the frame is not subdivided or partitioned. 

Furthermore, any given pair of elements has the same chance of selection as 
any other such pair (and similarly for triples, and so on). This minimises bias 

and simplifies analysis of results. In particular, the variance between 
individual results within the sample is a good indicator of variance in the 

overall population, which makes it relatively easy to estimate the accuracy of 
results. 

 
However, SRS can be vulnerable to sampling error because the randomness 

of the selection may result in a sample that doesn't reflect the makeup of 
the population. For instance, a simple random sample of ten people from a 

given country will on average produce five men and five women, but any 

given trial is likely to overrepresent one sex and underrepresent the other. 
Systematic and stratified techniques, discussed below, attempt to overcome 

this problem by using information about the population to choose a more 
representative sample. 

 
SRS may also be cumbersome and tedious when sampling from an unusually 

large target population. In some cases, investigators are interested in 
research questions specific to subgroups of the population. For example, 

researchers might be interested in examining whether cognitive ability as a 
predictor of job performance is equally applicable across racial groups. SRS 

cannot accommodate the needs of researchers in this situation because it 
does not provide subsamples of the population. Stratified sampling, which is 

discussed below, addresses this weakness of SRS. 
Simple random sampling is always an EPS design, but not all EPS designs 

are simple random sampling. 

 
Systematic sampling 

Systematic sampling relies on arranging the target population according to 
some ordering scheme and then selecting elements at regular intervals 

through that ordered list. Systematic sampling involves a random start and 
then proceeds with the selection of every kth element from then onwards. In 

this case, k=(population size/sample size). It is important that the starting 
point is not automatically the first in the list, but is instead randomly chosen 

from within the first to the kth element in the list. A simple example would 
be to select every 10th name from the telephone directory (an 'every 10th' 

sample, also referred to as 'sampling with a skip of 10'). 
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As long as the starting point is randomized, systematic sampling is a type of 

probability sampling. It is easy to implement and the stratification induced 
can make it efficient, if the variable by which the list is ordered is correlated 

with the variable of interest. 'Every 10th' sampling is especially useful for 
efficient sampling from databases. 

 
Example: Suppose we wish to sample people from a long street that starts in 

a poor district (house #1) and ends in an expensive district (house #1000). 
A simple random selection of addresses from this street could easily end up 

with too many from the high end and too few from the low end (or vice 
versa), leading to an unrepresentative sample. Selecting (e.g.) every 10th 

street number along the street ensures that the sample is spread evenly 
along the length of the street, representing all of these districts. (Note that if 

we always start at house #1 and end at #991, the sample is slightly biased 
towards the low end; by randomly selecting the start between #1 and #10, 

this bias is eliminated.) 

 
However, systematic sampling is especially vulnerable to periodicities in the 

list. If periodicity is present and the period is a multiple or factor of the 
interval used, the sample is especially likely to be unrepresentative of the 

overall population, making the scheme less accurate than simple random 
sampling. 

 
Example: Consider a street where the odd-numbered houses are all on the 

north (expensive) side of the road, and the even-numbered houses are all 
on the south (cheap) side. Under the sampling scheme given above, it is 

impossible' to get a representative sample; either the houses sampled will all 
be from the odd-numbered, expensive side, or they will all be from the 

even-numbered, cheap side. 
Another drawback of systematic sampling is that even in scenarios where it 

is more accurate than SRS, its theoretical properties make it difficult to 

quantify that accuracy. (In the two examples of systematic sampling that 
are given above, much of the potential sampling error is due to variation 

between neighbouring houses - but because this method never selects two 
neighbouring houses, the sample will not give us any information on that 

variation.) 
 

As described above, systematic sampling is an EPS method, because all 
elements have the same probability of selection (in the example given, one 

in ten). It is not 'simple random sampling' because different subsets of the 
same size have different selection probabilities - e.g. the set 

{4,14,24,...,994} has a one-in-ten probability of selection, but the set 
{4,13,24,34,...} has zero probability of selection. 
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Systematic sampling can also be adapted to a non-EPS approach; for an 

example, see discussion of PPS samples below. 
 

Stratified sampling 
Where the population embraces a number of distinct categories, the frame 

can be organized by these categories into separate "strata." Each stratum is 
then sampled as an independent sub-population, out of which individual 

elements can be randomly selected. There are several potential benefits to 
stratified sampling. 

 
First, dividing the population into distinct, independent strata can enable 

researchers to draw inferences about specific subgroups that may be lost in 
a more generalized random sample. 

 
Second, utilizing a stratified sampling method can lead to more efficient 

statistical estimates (provided that strata are selected based upon relevance 

to the criterion in question, instead of availability of the samples). Even if a 
stratified sampling approach does not lead to increased statistical efficiency, 

such a tactic will not result in less efficiency than would simple random 
sampling, provided that each stratum is proportional to the group’s size in 

the population. 
 

Third, it is sometimes the case that data are more readily available for 
individual, pre-existing strata within a population than for the overall 

population; in such cases, using a stratified sampling approach may be more 
convenient than aggregating data across groups (though this may potentially 

be at odds with the previously noted importance of utilizing criterion-
relevant strata). 

 
Finally, since each stratum is treated as an independent population, 

different sampling approaches can be applied to different strata, potentially 

enabling researchers to use the approach best suited (or most cost-
effective) for each identified subgroup within the population. 

 
There are, however, some potential drawbacks to using stratified sampling. 

First, identifying strata and implementing such an approach can increase the 
cost and complexity of sample selection, as well as leading to increased 

complexity of population estimates. Second, when examining multiple 
criteria, stratifying variables may be related to some, but not to others, 

further complicating the design, and potentially reducing the utility of the 
strata. Finally, in some cases (such as designs with a large number of strata, 

or those with a specified minimum sample size per group), stratified 
sampling can potentially require a larger sample than would other methods 



(although in most cases, the required sample size would be no larger than 

would be required for simple random sampling. 
 

A stratified sampling approach is most effective when three conditions are 
met 

1. Variability within strata are minimized 
2. Variability between strata are maximized 

3. The variables upon which the population is stratified are strongly 
correlated with the desired dependent variable. 

 
Advantages over other sampling methods 

1. Focuses on important subpopulations and ignores irrelevant ones. 
2. Allows use of different sampling techniques for different 

subpopulations. 
3. Improves the accuracy/efficiency of estimation. 

4. Permits greater balancing of statistical power of tests of differences 

between strata by sampling equal numbers from strata varying widely 
in size. 

 
Disadvantages 

1. Requires selection of relevant stratification variables which can be 
difficult. 

2. Is not useful when there are no homogeneous subgroups. 
3. Can be expensive to implement. 

 
Post stratification 

Stratification is sometimes introduced after the sampling phase in a process 
called "post stratification". This approach is typically implemented due to a 

lack of prior knowledge of an appropriate stratifying variable or when the 
experimenter lacks the necessary information to create a stratifying variable 

during the sampling phase. Although the method is susceptible to the pitfalls 

of post hoc approaches, it can provide several benefits in the right situation. 
Implementation usually follows a simple random sample. In addition to 

allowing for stratification on an ancillary variable, post-stratification can be 
used to implement weighting, which can improve the precision of a sample's 

estimates. 

 

Oversampling 
Choice-based sampling is one of the stratified sampling strategies. In choice-

based sampling, the data are stratified on the target and a sample is taken 
from each stratum so that the rare target class will be more represented in 

the sample. The model is then built on this biased sample. The effects of the 
input variables on the target are often estimated with more precision with 

the choice-based sample even when a smaller overall sample size is taken, 
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compared to a random sample. The results usually must be adjusted to 

correct for the oversampling. 
 

Probability proportional to size sampling 
In some cases the sample designer has access to an "auxiliary variable" or 

"size measure", believed to be correlated to the variable of interest, for each 
element in the population. These data can be used to improve accuracy in 

sample design. One option is to use the auxiliary variable as a basis for 
stratification, as discussed above. 

Another option is probability-proportional-to-size ('PPS') sampling, in which 
the selection probability for each element is set to be proportional to its size 

measure, up to a maximum of 1. In a simple PPS design, these selection 
probabilities can then be used as the basis for Poisson sampling. However, 

this has the drawback of variable sample size, and different portions of the 
population may still be over- or under-represented due to chance variation 

in selections. To address this problem, PPS may be combined with a 

systematic approach. 
 

Example: Suppose we have six schools with populations of 150, 180, 200, 
220, 260, and 490 students respectively (total 1500 students), and we want 

to use student population as the basis for a PPS sample of size three. To do 
this, we could allocate the first school numbers 1 to 150, the second school 

151 to 330 (= 150 + 180), the third school 331 to 530, and so on to the last 
school (1011 to 1500). We then generate a random start between 1 and 500 

(equal to 1500/3) and count through the school populations by multiples of 
500. If our random start was 137, we would select the schools which have 

been allocated numbers 137, 637, and 1137, i.e. the first, fourth, and sixth 
schools. 

 
The PPS approach can improve accuracy for a given sample size by 

concentrating sample on large elements that have the greatest impact on 

population estimates. PPS sampling is commonly used for surveys of 
businesses, where element size varies greatly and auxiliary information is 

often available - for instance, a survey attempting to measure the number of 
guest-nights spent in hotels might use each hotel's number of rooms as an 

auxiliary variable. In some cases, an older measurement of the variable of 
interest can be used as an auxiliary variable when attempting to produce 

more current estimates. 
 

Cluster sampling 
Sometimes it is cheaper to 'cluster' the sample in some way e.g. by selecting 

respondents from certain areas only, or certain time-periods only. (Nearly all 
samples are in some sense 'clustered' in time - although this is rarely taken 

into account in the analysis.) 
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Cluster sampling is an example of 'two-stage sampling' or 'multistage 
sampling': in the first stage a sample of areas is chosen; in the second stage 

a sample of respondents within those areas is selected. 
This can reduce travel and other administrative costs. It also means that one 

does not need a sampling frame listing all elements in the target population. 
Instead, clusters can be chosen from a cluster-level frame, with an element-

level frame created only for the selected clusters. Cluster sampling generally 
increases the variability of sample estimates above that of simple random 

sampling, depending on how the clusters differ between themselves, as 
compared with the within-cluster variation. 

 
Nevertheless, some of the disadvantages of cluster sampling are the reliance 

of sample estimate precision on the actual clusters chosen. If clusters 
chosen are biased in a certain way, inferences drawn about population 

parameters from these sample estimates will be far off from being accurate. 

 
Multistage sampling Multistage sampling is a complex form of cluster 

sampling in which two or more levels of units are embedded one in the 
other. The first stage consists of constructing the clusters that will be used 

to sample from. In the second stage, a sample of primary units is randomly 
selected from each cluster (rather than using all units contained in all 

selected clusters). In following stages, in each of those selected clusters, 
additional samples of units are selected, and so on. All ultimate units 

(individuals, for instance) selected at the last step of this procedure are then 
surveyed. 

 
This technique, thus, is essentially the process of taking random samples of 

preceding random samples. It is not as effective as true random sampling, 
but it probably solves more of the problems inherent to random sampling. 

Moreover, It is an effective strategy because it banks on multiple 

randomizations. As such, it is extremely useful. 
 

Multistage sampling is used frequently when a complete list of all members 
of the population does not exist and is inappropriate. Moreover, by avoiding 

the use of all sample units in all selected clusters, multistage sampling 
avoids the large, and perhaps unnecessary, costs associated traditional 

cluster sampling. 
 

Matched random sampling 
A method of assigning participants to groups in which pairs of participants 

are first matched on some characteristic and then individually assigned 
randomly to groups.  
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The procedure for matched random sampling can be briefed with the 

following contexts, 
1. Two samples in which the members are clearly paired, or are matched 

explicitly by the researcher. For example, IQ measurements or pairs of 
identical twins. 

 
2. Those samples in which the same attribute, or variable, is measured 

twice on each subject, under different circumstances. Commonly called 
repeated measures. Examples include the times of a group of athletes 

for 1500m before and after a week of special training; the milk yields 
of cows before and after being fed a particular diet. 

 
Quota sampling 

In quota sampling, the population is first segmented into mutually 
exclusive sub-groups, just as in stratified sampling. Then judgment is used 

to select the subjects or units from each segment based on a specified 

proportion. For example, an interviewer may be told to sample 200 females 
and 300 males between the age of 45 and 60. 

 
It is this second step which makes the technique one of non-probability 

sampling. In quota sampling the selection of the sample is non-random. For 
example interviewers might be tempted to interview those who look most 

helpful. The problem is that these samples may be biased because not 
everyone gets a chance of selection. This random element is its greatest 

weakness and quota versus probability has been a matter of controversy for 
many years. 

 
Convenience sampling or Accidental Sampling 

 
Convenience sampling (sometimes known as grab or opportunity 

sampling) is a type of nonprobability sampling which involves the sample 

being drawn from that part of the population which is close to hand. That is, 
a sample population selected because it is readily available and convenient. 

It may be through meeting the person or including a person in the sample 
when one meets them or chosen by finding them through technological 

means such as the internet or through phone. The researcher using such a 
sample cannot scientifically make generalizations about the total population 

from this sample because it would not be representative enough. For 
example, if the interviewer were to conduct such a survey at a shopping 

center early in the morning on a given day, the people that he/she could 
interview would be limited to those given there at that given time, which 

would not represent the views of other members of society in such an area, 
if the survey were to be conducted at different times of day and several 

times per week. This type of sampling is most useful for pilot testing.  
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Several important considerations for researchers using convenience samples 
include: 

1. Are there controls within the research design or experiment which can 
serve to lessen the impact of a non-random convenience sample, 

thereby ensuring the results will be more representative of the 
population? 

2. Is there good reason to believe that a particular convenience sample 
would or should respond or behave differently than a random sample 

from the same population? 
3. Is the question being asked by the research one that can adequately 

be answered using a convenience sample? 
 

In social science research, snowball sampling is a similar technique, where 
existing study subjects are used to recruit more subjects into the sample. 

 

9.4 Line-intercept sampling 
Line-intercept sampling is a method of sampling elements in a region 

whereby an element is sampled if a chosen line segment, called a ―transect‖, 
intersects the element. 

 
Panel sampling 

Panel sampling is the method of first selecting a group of participants 
through a random sampling method and then asking that group for the same 

information again several times over a period of time. Therefore, each 
participant is given the same survey or interview at two or more time points; 

each period of data collection is called a "wave". This sampling methodology 
is often chosen for large scale or nation-wide studies in order to gauge 

changes in the population with regard to any number of variables from 
chronic illness to job stress to weekly food expenditures. Panel sampling can 

also be used to inform researchers about within-person health changes due 

to age or help explain changes in continuous dependent variables such as 
spousal interaction. There have been several proposed methods of analyzing 

panel sample data, including MANOVA, growth curves, and structural 
equation modeling with lagged effects. For a more thorough look at 

analytical techniques for panel data, see Johnson (1995). 
 

Event sampling methodology 
Event sampling methodology (ESM) is a new form of sampling method 

that allows researchers to study ongoing experiences and events that vary 
across and within days in its naturally-occurring environment. Because of 

the frequent sampling of events inherent in ESM, it enables researchers to 
measure the typology of activity and detect the temporal and dynamic 

fluctuations of work experiences. Popularity of ESM as a new form of 
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research design increased over the recent years because it addresses the 

shortcomings of cross-sectional research, where once unable to, researchers 
can now detect intra-individual variances across time. In ESM, participants 

are asked to record their experiences and perceptions in a paper or 
electronic diary. 

 
There are three types of ESM: 

1. Signal contingent – random beeping notifies participants to record 
data. The advantage of this type of ESM is minimization of recall bias. 

2. Event contingent – records data when certain events occur 
3. Interval contingent – records data according to the passing of a certain 

period of time 
 

ESM has several disadvantages. One of the disadvantages of ESM is it can 
sometimes be perceived as invasive and intrusive by participants. ESM also 

leads to possible self-selection bias. It may be that only certain types of 

individuals are willing to participate in this type of study creating a non-
random sample. Another concern is related to participant cooperation. 

Participants may not be actually fill out their diaries at the specified times. 
Furthermore, ESM may substantively change the phenomenon being studied. 

Reactivity or priming effects may occur, such that repeated measurement 
may cause changes in the participants' experiences. This method of 

sampling data is also highly vulnerable to common method variance. 

 

Further, it is important to think about whether or not an appropriate 
dependent variable is being used in an ESM design. For example, it might be 

logical to use ESM in order to answer research questions which involve 
dependent variables with a great deal of variation throughout the day. Thus, 

variables such as change in mood, change in stress level, or the immediate 
impact of particular events may be best studied using ESM methodology. 

However, it is not likely that utilizing ESM will yield meaningful predictions 

when measuring someone performing a repetitive task throughout the day 
or when dependent variables are long-term in nature (coronary heart 

problems). 
 

Replacement of selected units 
Sampling schemes may be without replacement ('WOR' - no element can be 

selected more than once in the same sample) or with replacement ('WR' - an 
element may appear multiple times in the one sample). For example, if we 

catch fish, measure them, and immediately return them to the water before 
continuing with the sample, this is a WR design, because we might end up 

catching and measuring the same fish more than once. However, if we do 
not return the fish to the water (e.g. if we eat the fish), this becomes a WOR 

design. 
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Sample size 
Formulas, tables, and power function charts are well known approaches to 

determine sample size. 
 

Formulas 
Where the frame and population are identical, statistical theory yields exact 

recommendations on sample size. However, where it is not straightforward 
to define a frame representative of the population, it is more important to 

understand the cause system of which the population are outcomes and to 
ensure that all sources of variation are embraced in the frame. Large 

number of observations are of no value if major sources of variation are 
neglected in the study. In other words, it is taking a sample group that 

matches the survey category and is easy to survey.  
 

Bartlett, Kotrlik, and Higgins (2001) published a paper titled Organizational 

Research: Determining Appropriate Sample Size in Survey Research 
Information Technology, Learning, and Performance Journal that provides an 

explanation of Cochran’s (1977) formulas. A discussion and illustration of 
sample size formulas, including the formula for adjusting the sample size for 

smaller populations, is included. A table is provided that can be used to 
select the sample size for a research problem based on three alpha levels 

and a set error rate. 
 

Steps for using sample size tables 
1. Postulate the effect size of interest, α, and β. 

2. Check sample size table 
1. Select the table corresponding to the selected α 

2. Locate the row corresponding to the desired power 
3. Locate the column corresponding to the estimated effect size. 

4. The intersection of the column and row is the minimum sample 

size required. 
 

9.5 Sampling and data collection 
Good data collection involves: 

a) Following the defined sampling process 
b) Keeping the data in time order 

c) Noting comments and other contextual events 
d) Recording non-responses 

 
Most sampling books and papers written by non-statisticians focus only in 

the data collection aspect, which is just a small though important part of the 
sampling process. 
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Errors in sample surveys 

Survey results are typically subject to some error. Total errors can be 
classified into sampling errors and non-sampling errors. The term "error" 

here includes systematic biases as well as random errors. 
 Sampling errors and biases 

Sampling errors and biases are induced by the sample design. They include: 
1. Selection bias: When the true selection probabilities differ from those 

assumed in calculating the results. 
2. Random sampling error: Random variation in the results due to the 

elements in the sample being selected at random. 
 

Non-sampling error 
Non-sampling errors are caused by other problems in data collection and 

processing. They include: 
1. Overcoverage: Inclusion of data from outside of the population. 

2. Undercoverage: Sampling frame does not include elements in the 

population. 
3. Measurement error: E.g. when respondents misunderstand a 

question, or find it difficult to answer. 
4. Processing error: Mistakes in data coding. 

5. Non-response: Failure to obtain complete data from all selected 
individuals. 

 
After sampling, a review should be held of the exact process followed in 

sampling, rather than that intended, in order to study any effects that any 
divergences might have on subsequent analysis. A particular problem is that 

of non-response. 
 

Two major types of nonresponse exist: unit nonresponse (referring to lack of 
completion of any part of the survey) and item nonresponse (submission or 

participation in survey but failing to complete one or more 

components/questions of the survey). In survey sampling, many of the 
individuals identified as part of the sample may be unwilling to participate, 

not have the time to participate (opportunity cost), or survey administrators 
may not have been able to contact them. In this case, there is a risk of 

differences, between respondents and nonrespondents, leading to biased 
estimates of population parameters. This is often addressed by improving 

survey design, offering incentives, and conducting follow-up studies which 
make a repeated attempt to contact the unresponsive and to characterize 

their similarities and differences with the rest of the frame. The effects can 
also be mitigated by weighting the data when population benchmarks are 

available or by imputing data based on answers to other questions. 
 

Nonresponse is particularly a problem in internet sampling. Reasons for this 
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problem include improperly designed surveys, over-surveying (or survey 

fatigue), and the fact that potential participants hold multiple e-mail 
addresses, which they don't use anymore or don't check regularly. Web-

based surveys also tend to demonstrate nonresponse bias; for example, 
studies have shown that females and those from a white/Caucasian 

background are more likely to respond than their counterparts. 
  

Survey weights 
In many situations the sample fraction may be varied by stratum and data 

will have to be weighted to correctly represent the population. Thus for 
example, a simple random sample of individuals in the United Kingdom 

might include some in remote Scottish islands who would be inordinately 
expensive to sample. A cheaper method would be to use a stratified sample 

with urban and rural strata. The rural sample could be under-represented in 
the sample, but weighted up appropriately in the analysis to compensate. 

 

More generally, data should usually be weighted if the sample design does 
not give each individual an equal chance of being selected. For instance, 

when households have equal selection probabilities but one person is 
interviewed from within each household, this gives people from large 

households a smaller chance of being interviewed. This can be accounted for 
using survey weights. Similarly, households with more than one telephone 

line have a greater chance of being selected in a random digit dialing 
sample, and weights can adjust for this. 

 
Weights can also serve other purposes, such as helping to correct for non-

response. 
 

Random sampling by using lots is an old idea, mentioned several times in 
the Bible. In 1786 Pierre Simon Laplace estimated the population of France 

by using a sample, along with ratio estimator. He also computed probabilistic 

estimates of the error. These were not expressed as modern confidence 
intervals but as the sample size that would be needed to achieve a particular 

upper bound on the sampling error with probability 1000/1001. His 
estimates used Bayes' theorem with a uniform prior probability and it 

assumed his sample was random. The theory of small-sample statistics 
developed by William Sealy Gossett put the subject on a more rigorous basis 

in the 20th century.  
However, the importance of random sampling was not universally 

appreciated and in the USA the 1936 Literary Digest prediction of a 
Republican win in the presidential election went badly awry, due to severe 

bias. More than two million people responded to the study with their names 
obtained through magazine subscription lists and telephone directories. It 
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was not appreciated that these lists were heavily biased towards Republicans 

and the resulting sample, though very large, was deeply flawed. 
 

9.6 Sampling Distribution Of The Mean 

The sampling distribution of the mean is a very important distribution. In 
later chapters you will see that it is used to construct confidence intervals for 

the mean and for significance testing.  
The sampling distribution of a statistic is distribution of that statistic, 

considered as a random variable, when derived from a random sample of 
size n. It may be considered as the distribution of the statistic for all possible 

samples from the same population of a given size. The sampling distribution 
depends on the underlying distribution of the population, the statistic being 

considered, the sampling procedure employed and the sample size used. 
There is often considerable interest in whether the sampling distribution can 

be approximated by an asymptotic distribution, which corresponds to the 
limiting case as n → ∞. 

 
For example, consider a normal population with mean μ and variance ζ². 

Assume we repeatedly take samples of a given size from this population and 
calculate the arithmetic mean for each sample — this statistic is called the 

sample mean. Each sample has its own average value, and the distribution 
of these averages is called the ―sampling distribution of the sample mean‖. 

This distribution is normal since the underlying population is 

normal, although sampling distributions will also often be close to normal 
when the population distribution is not (see central limit theorem). An 

alternative to the sample mean is the sample median. When calculated from 
the same population, it has a different sampling distribution to that of the 

mean and is generally not normal (but it may be close for large sample 
sizes). 

 
The mean of a sample from a population having a normal distribution is an 

example of a simple statistic taken from one of the simplest statistical 
populations. For other statistics and other populations the formulas are more 

complicated, and often they don’t exist in closed-form. In such cases the 

sampling distributions may be approximated through Monte-Carlo 
simulations, bootstrap methods, or asymptotic distribution theory. 

 
Given a population with a mean of μ and a standard deviation of ζ, the 

sampling distribution of the mean has a mean of μ and a standard deviation 
of 

, where n is the sample size. The standard deviation of the 
sampling distribution of the mean is called the standard error of the mean. It 
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is designated by the symbol: ζM . Note that the spread of the sampling 

distribution of the mean decreases as the sample size increases. 
 

 
 

An example of the effect of sample size is shown above. Notice that the 
mean of the distribution is not affected by sample size. Click here for an 

interactive demonstration of sampling distributions. 
 

9.7 Central Limit Theorem 

The central limit theorem (CLT) states conditions under which the mean 

of a sufficiently large number of independent random variables, each with 
finite mean and variance, will be approximately normally distributed. The 

central limit theorem (in its common form) requires the random variables to 
be identically distributed. Since real-world quantities are often the balanced 

sum of many unobserved random events, this theorem provides a partial 
explanation for the prevalence of the normal probability distribution. The CLT 

also justifies the approximation of large-sample statistics to the normal 
distribution in controlled experiments. 

 

A simple example of the central limit theorem is given by the problem of 
rolling a large number of dice, each of which is weighted unfairly in some 

unknown way. The distribution of the sum (or average) of the rolled 
numbers will be well approximated by a normal distribution, the parameters 

of which can be determined empirically. 
 

In more general probability theory, a central limit theorem is any of a set 
of weak-convergence theories. They all express the fact that a sum of many 

independent random variables will tend to be distributed according to one of 
a small set of "attractor" (i.e. stable) distributions. When the variance of the 

variables is finite, the "attractor" distribution is the normal distribution. 
Specifically, the sum of a number of random variables with power law tail 

distributions decreasing as 1/|x|α + 1 where 0 < α < 2 (and therefore having 
infinite variance) will tend to a stable distribution with stability parameter (or 

index of stability) of α as the number of variables grows. This article is 

concerned only with the classical (i.e. finite variance) central limit theorem 
 

Central limit theorem 
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The means of a large number of samples taken randomly from the same 

population will themselves be normally distributed, and the axis of symmetry 
will be the population means. 

 
 

Calculating the standard error of mean 
 

S.E.  = sample standard deviation =    s 
 √Number of sampling units      √n 

 
Using the wing length measurements of 100 Robins (we determined in 

section 7.5 that the sample mean was 74.00mm and the standard deviation 
2.34mm) 

 
S.E.  =s = 2.34 = 2.34 = 0.234. 

   √N   √ 100     10 

 

9.8 Confidence limits of a proportionate or percentage 

 
S.E. = √ P (1- p) 

    N - 1 
 

Where p = sample proportion; 
           n  = Number of sampling units. 

 
Thus, in this example, 

 
S.E.       =     0.75 (1- 0.75) = 0.049 

             80 – 1 
The 95% confidence limits are therefore 0.75 ± (1.96 x 0.049) 

     = 0.75 ± 0.09 

The graphical display of variation 
Graphs or histograms depicting mean values of sets of counts or 

measurements often show ―error‖ or deviation‖ bars. These bars may 
indicate any of the following 

(a) range 
(b) standard deviation 

(c) standard error of the mean 
(d) 95% confidence limits. 

 
 

            20 
 



 

 
 

 
Mean weighted        10 

 
 

 
 

 
                                                            0     ± range   ± s          ± S.E          

95% CL 
Clumped Distribution 

A clump distribution (also called ―aggregated‖ over dispersed by a frequency 
distribution diagram of the data which has a strong positive skew (that is, 

the tail extends to the right) statistically, a sample of clumped data has a 

variance which is considerably greater than the mean. An example will 
illustrate this. 

 
Positive skewed variance (s2) >mean (x) 

 
 

 
 

 
 

 
 

- S2 > x 
- Not normally distributed 

- They skewed 

- Log transformation is done to normalize the data. 
 

Log transformation 
Is the most suitable transformation for clumped counts, but is not 

appropriate if there are any zero counts: Log (O) = infinity. ―Tail‖ or skew 
has been squashed up by the transformation and the curve does, indeed, 

appear to be symmetrical. 
 

The transformed counts the variance is now less than the mean and a 
satisfactory transformation to Normal maybe assumed. 

When the analyses are complete, the arithmetic means of the transformed 
counts has to be transformed back to the original scale and thus becomes a 



derived mean. For a log (x + 1) transformation, the antilog of the mean 

transformed count x must be obtained and 1 subtracted. 
 

Random distribution – the square root transformation. 
A population which furnishes samples whose variances are about equal to 

the means is said to exhibit a random, or Poisson, diction and, because a 
random distribution, some transformation is necessary in circumstances 

when normality is required or assumed. 
 

The variance is very similar to the men and so a random distribution may be 
assumed. In this case transformations of x by √x will covert the data to an 

appropriately Normal distribution. 
The variance of the transformed counts is now well below the confidence 

limits or the use of parametric tests which assumes a normal or t 
distribution. At the end of the procedure, the transformed statistics are 

converted back to the original scale by squaring. 

 
Is data transformation really necessary? 

Data transformation should not be regarded as somehow ―cheating‖, It is a 
way of making sure that the statistical methods can be validly applied. 

However, there is an alternative to data transformation 
 

Central limit theorems for independent sequences 
Classical CLT 

Let {X1, X2, …, Xn} be a random sample of size n — that is, a sequence of 
independent and identically distributed random variables with expected 

values µ and variances ζ2. Suppose we are interested in the behavior of the 

sample average of these random variables: Sn = 1n(X1 + … + Xn). Then the 

central limit theorem asserts that for large n’s, the distribution of Sn is 

approximately normal with mean µ and variance 1nζ2. The true strength of 

the theorem is that Sn approaches normality regardless of the shapes of the 

distributions of individual Xi’s. Formally, the theorem can be stated as 
follows: 

Lindeberg–Lévy CLT: suppose {Xi} is a sequence of iid random 
variables with E[Xi] = µ and Var[Xi] = ζ2. Then as n approaches 

infinity, the random variable √n(Sn − µ) converges in distribution to a 

normal N(0, ζ2):  

 
Convergence in distribution means that the cumulative distribution function 

of √n(Sn − µ) converges pointwise to the cdf of the N(0, ζ2) distribution: for 

any real number z, 
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where Φ(x) is the standard normal cdf. 

 
Lyapunov CLT 

The theorem is named after a Russian mathematician Aleksandr Lyapunov. 
In this variant of the central limit theorem the random variables Xi have to 

be independent, but not necessarily identically distributed. The theorem also 
requires that random variables |Xi| have moments of some order (2 + δ), 

and that the rate of growth of these moments is limited by the Lyapunov 
condition given below. 

Lyapunov CLT: let {Xi} be a sequence of independent random 

variables, each having a finite expected value μi and variance ζ 2 
i . Define s 2 

n  = ∑n 
i = 1 ζ 2 

i . If for some δ > 0, the Lyapunov’s condition  

 
is satisfied, then a sum of (Xi − μi)/sn converges in distribution to a 

standard normal random variable, as n goes to infinity:  

 
In practice it is usually easiest to check the Lyapunov’s condition for δ = 1. 

If a sequence of random variables satisfies Lyapunov’s condition, then it also 
satisfies Lindeberg’s condition. The converse implication, however, does not 

hold. 
 

Lindeberg CLT 
In the same setting and with the same notation as above, we can replace 

the Lyapunov condition with the following weaker one (from Lindeberg in 
1920). For every ε > 0 

 
where 1{…} is the indicator function. Then the distribution of the 
standardized sum Zn converges towards the standard normal distribution 

N(0,1). 
 

Multidimensional CLT 
We can easily extend proofs using characteristic functions for cases where 

each individual X1,X2,X3,...,Xn is an independent and identically distributed 

random vector in , with mean vector and covariance matrix Σ 
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(amongst the individual components of the vector). Now, if we take the 

summations of these vectors as being done componentwise, then the 
Multidimensional central limit theorem states that when scaled, these 

converge to a multivariate normal distribution[5]. 
Let 

be the i-vector. The bold in means that it is a random 

vector, not a random (univariate) variable. 
Then the sum of the random vectors will be 

 
and the average will be 

 
and therefore 

. 

The multivariate central limit theorem states that 

 
 
where the covariance matrix Σ is equal to 
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Central limit theorems for dependent processes 
CLT under weak dependence 

A useful generalization of a sequence of independent, identically distributed 
random variables is a mixing random process in discrete time; "mixing" 

means, roughly, that random variables temporally far apart from one 
another are nearly independent. Several kinds of mixing are used in ergodic 

theory and probability theory. See especially strong mixing (also called α-
mixing) defined by α(n) → 0 where α(n) is so-called strong mixing 

coefficient. 

 

A simplified formulation of the central limit theorem under strong mixing is 
given in (Billingsley 1995, Theorem 27.4): 

Theorem. Suppose that X1, X2, … is stationary and α-mixing with αn = 
O(n−5) and that E(Xn) = 0 and E(Xn

12) < ∞. Denote Sn = X1 + … + Xn, then 

the limit ζ2 = lim nn − 1E(Sn
2) exists, and if ζ ≠ 0 then converges in 

distribution to N(0, 1). 
 

In fact, ζ2 = E(X1
2) + 2∑k=1

∞E(X1X1+k), where the series converges 
absolutely. 

The assumption ζ ≠ 0 cannot be omitted, since the asymptotic normality 
fails for Xn = Yn − Yn−1 where Yn are another stationary sequence. 

For the theorem in full strength see (Durrett 1996, Sect. 7.7(c), Theorem 
(7.8)); the assumption E(Xn

12) < ∞ is replaced with E(|Xn|
2 + δ) < ∞, and the 

assumption αn = O(n − 5) is replaced with Existence of such 

δ > 0 ensures the conclusion. For encyclopedic treatment of limit theorems 
under mixing conditions see (Bradley 2005). 

 

Martingale difference CLT 
 

Theorem. Let a martingale Mn satisfy 

   in probability as n tends 

to infinity, 

 for every ε > 0,   

  as n tends to infinity, 

then converges in distribution to N(0,1) as n tends to infinity. 

See (Durrett 1996, Sect. 7.7, Theorem (7.4)) or (Billingsley 1995, Theorem 
35.12). 
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Caution: The restricted expectation E(X; A) should not be confused with the 

conditional expectation E(X|A) = E(X; A)/P(A). 
 

Remarks 
Proof of classical CLT 

For a theorem of such fundamental importance to statistics and applied 
probability, the central limit theorem has a remarkably simple proof using 

characteristic functions. It is similar to the proof of a (weak) law of large 
numbers. For any random variable, Y, with zero mean and a unit variance 

(var(Y) = 1), the characteristic function of Y is, by Taylor's theorem, 

 
where o (t2 ) is "little o notation" for some function of t  that goes to zero 
more rapidly than t2. Letting Yi be (Xi − μ)/ζ, the standardized value of Xi, it 

is easy to see that the standardized mean of the observations X1, X2, ..., Xn 
is 

 
By simple properties of characteristic functions, the characteristic function of 

Zn is 

 
But this limit is just the characteristic function of a standard normal 
distribution N(0, 1), and the central limit theorem follows from the Lévy 

continuity theorem, which confirms that the convergence of characteristic 

functions implies convergence in distribution. 
 

9.9 Convergence to the limit 
The central limit theorem gives only an asymptotic distribution. As an 

approximation for a finite number of observations, it provides a reasonable 
approximation only when close to the peak of the normal distribution; it 

requires a very large number of observations to stretch into the tails. 
 

If the third central moment E((X1 − μ)3) exists and is finite, then the above 
convergence is uniform and the speed of convergence is at least on the 

order of 1/n1/2. 
 

The convergence to the normal distribution is monotonic, in the sense that 
the entropy of Zn increases monotonically to that of the normal distribution, 

as proven in Artstein, Ball, Barthe and Naor (2004). 

The central limit theorem applies in particular to sums of independent and 
identically distributed discrete random variables. A sum of discrete random 
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variables is still a discrete random variable, so that we are confronted with a 

sequence of discrete random variables whose cumulative probability 
distribution function converges towards a cumulative probability distribution 

function corresponding to a continuous variable (namely that of the normal 
distribution). This means that if we build a histogram of the realisations of 

the sum of n independent identical discrete variables, the curve that joins 
the centers of the upper faces of the rectangles forming the histogram 

converges toward a Gaussian curve as n approaches infinity, this relation is 
known as de Moivre–Laplace theorem. The binomial distribution article 

details such an application of the central limit theorem in the simple case of 
a discrete variable taking only two possible values. 

 
Relation to the law of large numbers 

The law of large numbers as well as the central limit theorem are partial 
solutions to a general problem: "What is the limiting behavior of Sn as n 

approaches infinity?" In mathematical analysis, asymptotic series are one of 

the most popular tools employed to approach such questions. 
Suppose we have an asymptotic expansion of ƒ(n): 

 
Dividing both parts by φ1(n) and taking the limit will produce a1, the 

coefficient of the highest-order term in the expansion, which represents the 
rate at which ƒ(n) changes in its leading term. 

 
Informally, one can say: "ƒ(n) grows approximately as a1 φ(n)". Taking the 

difference between ƒ(n) and its approximation and then dividing by the next 
term in the expansion, we arrive at a more refined statement about ƒ(n): 

 
Here one can say that the difference between the function and its 

approximation grows approximately as a2 φ2(n). The idea is that dividing the 
function by appropriate normalizing functions, and looking at the limiting 

behavior of the result, can tell us much about the limiting behavior of the 

original function itself. 
 

Informally, something along these lines is happening when the sum, Sn, of 
independent identically distributed random variables, X1, ..., Xn, is studied in 

classical probability theory. If each Xi has finite mean μ, then by the law of 
large numbers, Sn/n → μ. If in addition each Xi has finite variance ζ2, then 

by the central limit theorem, 
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where ξ is distributed as N(0, ζ2). This provides values of the first two 

constants in the informal expansion 

 
In the case where the Xi's do not have finite mean or variance, convergence 

of the shifted and rescaled sum can also occur with different centering and 

scaling factors: 

 
or informally 

 
Distributions Ξ which can arise in this way are called stable. Clearly, the 
normal distribution is stable, but there are also other stable distributions, 

such as the Cauchy distribution, for which the mean or variance are not 
defined. The scaling factor bn may be proportional to nc, for any c ≥ 1/2; it 

may also be multiplied by a slowly varying function of n.  
The law of the iterated logarithm tells us what is happening "in between" the 

law of large numbers and the central limit theorem. Specifically it says that 

the normalizing function intermediate in size between n of the 

law of large numbers and √n of the central limit theorem provides a non-
trivial limiting behavior. 

 
Illustration 

Main article: Illustration of the central limit theorem 
Given its importance to statistics, a number of papers and computer 

packages are available that demonstrate the convergence involved in the 
central limit theorem.  

 
Alternative statements of the theorem 

Density functions 

The density of the sum of two or more independent variables is the 
convolution of their densities (if these densities exist). Thus the central limit 

theorem can be interpreted as a statement about the properties of density 
functions under convolution: the convolution of a number of density 

functions tends to the normal density as the number of density functions 
increases without bound, under the conditions stated above. 

 
Characteristic functions 

Since the characteristic function of a convolution is the product of the 
characteristic functions of the densities involved, the central limit theorem 

has yet another restatement: the product of the characteristic functions of a 
number of density functions becomes close to the characteristic function of 

the normal density as the number of density functions increases without 
bound, under the conditions stated above. However, to state this more 
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precisely, an appropriate scaling factor needs to be applied to the argument 

of the characteristic function. 
 

An equivalent statement can be made about Fourier transforms, since the 
characteristic function is essentially a Fourier transform. 

 
Extensions to the theorem 

Products of positive random variables 
The logarithm of a product is simply the sum of the logarithms of the 

factors. Therefore when the logarithm of a product of random variables that 
take only positive values approaches a normal distribution, the product itself 

approaches a log-normal distribution. Many physical quantities (especially 
mass or length, which are a matter of scale and cannot be negative) are the 

products of different random factors, so they follow a log-normal 
distribution. 

 

Whereas the central limit theorem for sums of random variables requires the 
condition of finite variance, the corresponding theorem for products requires 

the corresponding condition that the density function be square-integrable 
(see Rempala 2002). 

 
Multivariate central limit theorem 

If the i.i.d. random variate is an m-dimensional vector, represented as Xj 
where j=0,1,...,m and the mean vector is: 

μj = E(Xj) 
and the covariance matrix for the m components is 

Σjk = E(XjXk) − E(Xj)E(Xk) 
and if Xij is the j-th component in the i-th sample, then the sample mean for 

N trials is 

 

and the central limit theorem for the distribution of will be: 

 

where is the multivariate normal distribution for N trials, "| |" specifies 

the determinant, and summation is assumed over products with repeated 

indices. For N=1, and the univariate central 

limit theorem is recovered. 
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Beyond the classical framework 
Asymptotic normality, that is, convergence to the normal distribution after 

appropriate shift and rescaling, is a phenomenon much more general than 
the classical framework treated above, namely, sums of independent 

random variables (or vectors). New frameworks are revealed from time to 
time; no single unifying framework is available for now. 

 
Convex body 
Theorem (Klartag 2007, Theorem 1.2). There exists a sequence εn ↓ 0 for 

which the following holds. Let n ≥ 1, and let random variables X1, …, Xn have 

a log-concave joint density f such that ƒ(x1, …, xn) = ƒ(|x1|, …, |xn|) for all 
x1, …, xn, and E(Xk

2) = 1 for all k = 1, …, n. Then the distribution of 

is εn-close to N(0, 1) in the total variation distance. 
 

These two εn-close distributions have densities (in fact, log-concave 
densities), thus, the total variance distance between them is the integral of 

the absolute value of the difference between the densities. Convergence in 
total variation is stronger than weak convergence. 

 

An important example of a log-concave density is a function constant inside 
a given convex body and vanishing outside; it corresponds to the uniform 

distribution on the convex body, which explains the term "central limit 
theorem for convex bodies". 

 
Another example: ƒ(x1, …, xn) = const · exp ( − (|x1|

α + … + |xn|
α)β) where 

α > 1 and αβ > 1. If β = 1 then ƒ(x1, …, xn) factorizes into const · exp ( − 

|x1|
α)…exp ( − |xn|

α), which means independence of X1, …, Xn. In general, 

however, they are dependent. 

 

The condition ƒ(x1, …, xn) = ƒ(|x1|, …, |xn|) ensures that X1, …, Xn are of 
zero mean and uncorrelated; still, they need not be independent, nor even 

pairwise independent. By the way, pairwise independence cannot replace 
independence in the classical central limit theorem (Durrett 1996, Section 

2.4, Example 4.5). 
 

Here is a Berry-Esseen type result. 
Theorem (Klartag 2008, Theorem 1). Let X1, …, Xn satisfy the assumptions 

of the previous theorem, then 

 
for all a < b; here C is a universal (absolute) constant. Moreover, for every 
c1, …, cn ∈ R such that c1

2 + … + cn
2 = 1, 
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A more general case is treated in (Klartag 2007, Theorem 1.1). The 
condition ƒ(x1, …, xn) = ƒ(|x1|, …, |xn|) is replaced with much weaker 

conditions: E(Xk) = 0, E(Xk
2) = 1, E(XkXℓ) = 0 for 1 ≤ k < ℓ ≤ n. The 

distribution of need not be approximately normal (in 

fact, it can be uniform). However, the distribution of c1X1 + … + cnXn is close 

to N(0,1) (in the total variation distance) for most of vectors (c1, …, cn) 
according to the uniform distribution on the sphere c1

2 + … + cn
2 = 1. 

 
Lacunary trigonometric series 

Theorem (Salem - Zygmund). Let U be a random variable distributed 
uniformly on (0, 2π), and Xk = rk cos(nkU + ak), where 

 nk satisfy the lacunarity condition: there exists q > 1 such that 
nk+1 ≥ qnk for all k, 

 rk are such that 

 
 0 ≤ ak < 2π. 

Then 

 
converges in distribution to N(0, 1/2). 
See (Zygmund 1959, Sect. XVI.5, Theorem (5-5)) or (Gaposhkin 1966, 

Theorem 2.1.13). 
 

Gaussian polytopes 
Theorem (Barany & Vu 2007, Theorem 1.1). Let A1, ..., An be independent 

random points on the plane R2 each having the two-dimensional standard 
normal distribution. Let Kn be the convex hull of these points, and Xn the 

area of Kn Then 

 
converges in distribution to N(0,1) as n tends to infinity. 
The same holds in all dimensions (2, 3, ...). 

The polytope Kn is called Gaussian random polytope. 
A similar result holds for the number of vertices (of the Gaussian polytope), 

the number of edges, and in fact, faces of all dimensions (Barany & Vu 2007, 
Theorem 1.2). 
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Linear functions of orthogonal matrices 
A linear function of a matrix M is a linear combination of its elements (with 

given coefficients), M ↦ tr(AM) where A is the matrix of the coefficients; see 

Trace_(linear_algebra)#Inner product. 

A random orthogonal matrix is said to be distributed uniformly, if its 
distribution is the normalized Haar measure on the orthogonal group O(n,R); 

see Rotation matrix#Uniform random rotation matrices. 
 

Theorem (Meckes 2008). Let M be a random orthogonal n×n matrix 

distributed uniformly, and A a fixed n×n matrix such that tr(AA*) = n, and 
let X = tr(AM). Then the distribution of X is close to N(0,1) in the total 

variation metric up to  
 

Subsequences 
Theorem (Gaposhkin 1966, Sect. 1.5). Let random variables X1, X2, … ∈ 
L2(Ω) be such that Xn → 0 weakly in L2(Ω) and Xn

2 → 1 weakly in L1(Ω). 

Then there exist integers n1 < n2 < … such that 
converges in distribution to N(0, 1) as k tends to infinity. 

Applications and examples 

 
A histogram plot of monthly accidental deaths in the US, between 1973 and 
1978 exhibits normality, due to the central limit theorem 

 
There are a number of useful and interesting examples and applications 

arising from the central limit theorem (Dinov, Christou & Sanchez 2008).  
 

The probability distribution for total distance covered in a random walk 
(biased or unbiased) will tend toward a normal distribution. 

 Flipping a large number of coins will result in a normal distribution for 
the total number of heads (or equivalently total number of tails). 
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From another viewpoint, the central limit theorem explains the common 

appearance of the "Bell Curve" in density estimates applied to real world 
data. In cases like electronic noise, examination grades, and so on, we can 

often regard a single measured value as the weighted average of a large 
number of small effects. Using generalisations of the central limit theorem, 

we can then see that this would often (though not always) produce a final 
distribution that is approximately normal. 

 
In general, the more a measurement is like the sum of independent 

variables with equal influence on the result, the more normality it exhibits. 
This justifies the common use of this distribution to stand in for the effects of 

unobserved variables in models like the linear model. 
 

Signal processing 
Signals can be smoothed by applying a Gaussian filter, which is just the 

convolution of a signal with an appropriately scaled Gaussian function. Due 

to the central limit theorem this smoothing can be approximated by several 
filter steps that can be computed much faster, like the simple moving 

average. 
 

The central limit theorem implies that to achieve a Gaussian of variance ζ2 n 
filters with windows of variances ζ1

2, …, ζn
2 with ζ2 = ζ1

2 + ⋯ + ζn
2 must be 

applied. 
 

History 

Tijms (2004, p. 169) writes: 
The central limit theorem has an interesting history. The first version of this 

theorem was postulated by the French-born mathematician Abraham de 
Moivre who, in a remarkable article published in 1733, used the normal 

distribution to approximate the distribution of the number of heads resulting 
from many tosses of a fair coin. This finding was far ahead of its time, and 

was nearly forgotten until the famous French mathematician Pierre-Simon 
Laplace rescued it from obscurity in his monumental work Théorie Analytique 

des Probabilités, which was published in 1812.  
 

Laplace expanded De Moivre's finding by approximating the binomial 
distribution with the normal distribution. But as with De Moivre, Laplace's 

finding received little attention in his own time. It was not until the 
nineteenth century was at an end that the importance of the central limit 

theorem was discerned, when, in 1901, Russian mathematician Aleksandr 

Lyapunov defined it in general terms and proved precisely how it worked 
mathematically. Nowadays, the central limit theorem is considered to be the 

unofficial sovereign of probability theory 
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Sir Francis Galton (Natural Inheritance, 1889) described the Central Limit 

Theorem as: 
I know of scarcely anything so apt to impress the imagination as the 

wonderful form of cosmic order expressed by the "Law of Frequency of 
Error". The law would have been personified by the Greeks and deified, if 

they had known of it. It reigns with serenity and in complete self-
effacement, amidst the wildest confusion. The huger the mob, and the 

greater the apparent anarchy, the more perfect is its sway. It is the supreme 
law of Unreason. Whenever a large sample of chaotic elements are taken in 

hand and marshaled in the order of their magnitude, an unsuspected and 
most beautiful form of regularity proves to have been latent all along 

 
 

 
The actual term "central limit theorem" (in German: "zentraler 

Grenzwertsatz") was first used by George Pólya in 1920 in the title of a 

paper.[Pólya referred to the theorem as "central" due to its importance in 
probability theory. According to Le Cam, the French school of probability 

interprets the word central in the sense that "it describes the behaviour of 
the centre of the distribution as opposed to its tails". The abstract of the 

paper On the central limit theorem of calculus of probability and the problem 
of moments by Pólya in 1920 translates as follows. 

 
The occurrence of the Gaussian probability density e−x2 in repeated 

experiments, in errors of measurements, which result in the combination of 
very many and very small elementary errors, in diffusion processes etc., can 

be explained, as is well-known, by the very same limit theorem, which plays 
a central role in the calculus of probability. The actual discoverer of this limit 

theorem is to be named Laplace; it is likely that its rigorous proof was first 
given by Tschebyscheff and its sharpest formulation can be found, as far as I 

am aware of, in an article by Liapounoff. 

 
A thorough account of the theorem's history, detailing Laplace's foundational 

work, as well as Cauchy's, Bessel's and Poisson's contributions, is provided 
by Hald. Two historical accounts, one covering the development from 

Laplace to Cauchy, the second the contributions by von Mises, Pólya, 
Lindeberg, Lévy, and Cramér during the 1920s, are given by Hans Fischer. 

Le Cam describes a period around 1935. 
 

A curious footnote to the history of the Central Limit Theorem is that a proof 
of a result similar to the 1922 Lindeberg CLT was the subject of Alan Turing's 

1934 Fellowship Dissertation for King's College at the University of 
Cambridge. Only after submitting the work did Turing learn it had already 

been proved. Consequently, Turing's dissertation was never published. 
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9.10 Using Sample Data For Estimation 

Sample size determination is the act of choosing the number of 

observations to include in a statistical sample. The sample size is an 
important feature of any empirical study in which the goal is to make 

inferences about a population from a sample. In practice, the sample size 
used in a study is determined based on the expense of data collection, and 

the need to have sufficient statistical power. In complicated studies there 
may be several different sample sizes involved in the study: for example, in 

as survey sampling involving stratified sampling there would be different 
sample sizes for each population. In a census, data are collected on the 

entire population, hence the sample size is equal to the population size. In 
experimental design, where a study may be divided into different treatment 

groups, there may be different sample sizes for each group. 
 

Sample sizes may chosen in several different ways: 

 expedience: for example, include those items it is convenient to collect 
within a given time period 

 using a target variance for an estimate to be derived from the sample 
eventually obtained 

 using a target for the power of a statistical test to be applied once the 
sample is collected. 

 
How samples are collected is discussed in sampling (statistics) and survey 

data collection 
Larger sample sizes generally lead to increased precision when estimating 

unknown parameters. For example, if we wish to know the proportion of a 
certain species of fish that is infected with a pathogen, we would generally 

have a more accurate estimate of this proportion if we sampled and 
examined 200, rather than 100 fish. Several fundamental facts of 

mathematical statistics describe this phenomenon, including the law of large 

numbers and the central limit theorem. 
 

In some situations, the increase in accuracy for larger sample sizes is 
minimal, or even non-existent. This can result from the presence of 

systematic errors or strong dependence in the data, or if the data follow a 
heavy-tailed distribution. 

 
Sample sizes are judged based on the quality of the resulting estimates. For 

example, if a proportion is being estimated, one may wish to have the 95% 
confidence interval be less than 0.06 units wide. Alternatively, sample size 

may be assessed based on the power of a hypothesis test. For example, if 
we are comparing the support for a certain political candidate among women 
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with the support for that candidate among men, we may wish to have 80% 

power to detect a difference in the support levels of 0.04 units. 
 

Estimating proportions and means 
A relatively simple situation is estimation of a proportion. For example, we 

may wish to estimate the proportion of residents in a community who are at 
least 65 years old. 

 

The estimator of a proportion is , where X is the number of 

'positive' observations (e.g. the number of people out of the n sampled 
people who are at least 65 years old). When the observations are 

independent, this estimator has a (scaled) binomial distribution (and is also 
the sample mean of data from a Bernoulli distribution). The maximum 

variance of this distribution is 0.25/n, which occurs when the true parameter 
is p = 0.5. In practice, since p is unknown, the maximum variance is often 

used to for sample size assessments. 
 

For sufficiently large n, the distribution of will be closely approximated by a 
normal distribution with the same mean and variance.Using this 

approximation, it can be shown that around 95% of this distribution's 
probability lies within 2 standard deviations of the mean. Because of this, an 

interval of the form 

 
will form a 95% confidence interval for the true proportion. If this interval 
needs to be no more than W units wide, the equation 

 
can be solved for n, yielding n = 4/W2 = 1/B2 where B is the error bound on 

the estimate, i.e., the estimate is usually given as within ± B. So, for B = 
10% one requires n = 100, for B = 5% one needs n = 400, for B = 3% the 

requirement approximates to n = 1000, while for B = 1% a sample size of n 
= 10000 is required. These numbers are quoted often in news reports of 

opinion polls and other sample surveys. 

 
Estimation of means 

A proportion is a special case of a mean. When estimating the population 
mean using an independent and identically distributed (iid) sample of size n, 

where each data value has variance ζ2, the standard error of the sample 
mean is: 

 
This expression describes quantitatively how the estimate becomes more 
precise as the sample size increases. Using the central limit theorem to 
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justify approximating the sample mean with a normal distribution yields an 

approximate 95% confidence interval of the form 

 
If we wish to have a confidence interval that is W units in width, we would 
solve 

 
for n, yielding the sample size n = 16ζ2/W2. 
For example, if we are interested in estimating the amount by which a drug 

lowers a subject's blood pressure with a confidence interval that is six units 
wide, and we know that the standard deviation of blood pressure in the 

population is 15, then the required sample size is 100. 
 

Required sample sizes for hypothesis tests  
A common problem facing statisticians is calculating the sample size 

required to yield a certain power for a test, given a predetermined Type I 

error rate α. As follows, this can be estimated by pre-determined tables for 
certain values, by Mead's resource equation, or, more generalized, but the 

cumulative distribution function: 
 

By tables 
The table shown at right can be used to in a two-sample 

t-test to estimate the sample sizes of an experimental 
group and a control group that are of equal size, that is, 

the total number of individuals in the trial is twice that 
of the number given, and the desired significance level 

is 0.05. The parameters used are: 
 The desired statistical power of the trial, shown in 

column to the left. 
 Cohen's d, which is the expected difference 

between the means of the target values between 

the experimental group and the control group, 
divided by the expected standard deviation. 

 
Mead's resource equation 

Mead's resource equation is often used for estimating sample sizes of 
laboratory animals, as well as in many other laboratory experiments. It may 

not be as accurate as using other methods in estimating sample size, but 
gives a hint of what is the appropriate sample size where parameters such 

as expected standard deviations or expected differences in values between 
groups are unknown or very hard to estimate. 

  
All the parameters in the equation are in fact the degrees of freedom of the 

number of their concepts, and hence, their numbers are subtracted by 1 
before insertion into the equation. 

[4] 
  

Power 

Cohen's d 

0.2 0.5 0.8 

0.25 84 14 6 

0.50 193 32 13 

0.60 246 40 16 

0.70 310 50 20 

0.80 393 64 26 

0.90 526 85 34 

0.95 651 105 42 

0.99 920 148 58 
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The equation is:  

E = N − B − T, 
where: 

 N is the total number of individuals or units in the study (minus 1) 
 B is the blocking component, representing environmental effects 

allowed for in the design (minus 1) 
 T is the treatment component, corresponding to the number of 

treatment groups (including control group) being used, or the number 
of questions being asked (minus 1) 

 E is the degrees of freedom of the error component, and should be 
somewhere between 10 and 20. 

 
For example, if a study using laboratory animals is planned with four 

treatment groups (T=3), with eight animals per group, making 32 animals 
total (N=31), without any further stratification (B=0), then E would equal 

28, which is above the cutoff of 20, indicating that sample size may be a bit 

too large, and six animals per group might be more appropriate. 
 

By cumulative distribution function 
Let Xi, i = 1, 2, ..., n be independent observations taken from a normal 

distribution with unknown mean μ and known variance ζ2. Let us consider 
two hypotheses, a null hypothesis: 

H0:μ = 0 
and an alternative hypothesis: 

Ha:μ = μ * 
for some 'smallest significant difference' μ* >0. This is the smallest value for 

which we care about observing a difference. Now, if we wish to (1) reject H0 
with a probability of at least 1-β when Ha is true (i.e. a power of 1-β), and 

(2) reject H0 with probability α when H0 is true, then we need the following: 
If zα is the upper α percentage point of the standard normal distribution, 

then 

 
and so 

'Reject H0 if our sample average ( ) is more than ' 

is a decision rule which satisfies (2). (Note, this is a 1-tailed test) 

Now we wish for this to happen with a probability at least 1-β when Ha is 
true. In this case, our sample average will come from a Normal distribution 

with mean μ*. Therefore we require 

 
Through careful manipulation, this can be shown to happen when 
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where Φ is the normal cumulative distribution function. 

 
Stratified sample size 

With more complicated sampling techniques, such as stratified sampling, the 
sample can often be split up into sub-samples. Typically, if there are k such 

sub-samples (from k different strata) then each of them will have a sample 
size ni, i = 1, 2, ..., k. These ni must conform to the rule that n1 + n2 + ... + 

nk = n (i.e. that the total sample size is given by the sum of the sub-sample 
sizes). Selecting these ni optimally can be done in various ways, using (for 

example) Neyman's optimal allocation. 
 

There are many reasons to use stratified sampling: to decrease variances of 
sample estimates, to use partly non-random methods, or to study strata 

individually. A useful, partly non-random method would be to sample 
individuals where easily accessible, but, where not, sample clusters to save 

travel costs. 

In general, for H strata, a weighted sample mean is 

 
with 

 
The weights, W(h), frequently, but not always, represent the proportions of 

the population elements in the strata, and W(h)=N(h)/N. For a fixed sample 
size, that is n=Sum{n(h)}, 

 
which can be made a minimum if the sampling rate within each stratum is 
made proportional to the standard deviation within each stratum: nh / Nh = 

kSh. 
 

An "optimum allocation" is reached when the sampling rates within the 
strata are made directly proportional to the standard deviations within the 

strata and inversely proportional to the square roots of the costs per 
element within the strata: 

 
or, more generally, when 
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9.11 Confidence Intervals For A Population Mean 

 

A confidence interval (CI) is a particular kind of interval estimate of a 

population parameter and is used to indicate the reliability of an estimate. It 
is an observed interval (i.e it is calculated from the observations), in 

principle different from sample to sample, that frequently includes the 
parameter of interest, if the experiment is repeated. How frequently the 

observed interval contains the parameter is determined by the confidence 
level or confidence coefficient. 

 
A confidence interval with a particular confidence level is intended to give 

the assurance that, if the statistical model is correct, then taken over all the 
data that might have been obtained, the procedure for constructing the 

interval would deliver a confidence interval that included the true value of 
the parameter the proportion of the time set by the confidence level. More 

specifically, the meaning of the term "confidence level" is that, if confidence 
intervals are constructed across many separate data analyses of repeated 

(and possibly different) experiments, the proportion of such intervals that 

contain the true value of the parameter will approximately match the 
confidence level; this is guaranteed by the reasoning underlying the 

construction of confidence intervals. 
 

A confidence interval does not predict that the true value of the parameter 
has a particular probability of being in the confidence interval given the data 

actually obtained. (An interval intended to have such a property, called a 
credible interval, can be estimated using Bayesian methods; but such 

methods bring with them their own distinct strengths and weaknesses). 
 

Interval estimates can be contrasted with point estimates. A point estimate 
is a single value given as the estimate of a population parameter that is of 

interest, for example the mean of some quantity. An interval estimate 
specifies instead a range within which the parameter is estimated to lie. 

Confidence intervals are commonly reported in tables or graphs along with 

point estimates of the same parameters, to show the reliability of the 
estimates. 

 
For example, a confidence interval can be used to describe how reliable 

survey results are. In a poll of election voting-intentions, the result might be 
that 40% of respondents intend to vote for a certain party. A 90% 

http://en.wikipedia.org/wiki/Interval_estimation
http://en.wikipedia.org/wiki/Population_parameter
http://en.wikipedia.org/wiki/Credible_interval
http://en.wikipedia.org/wiki/Bayesian_statistics
http://en.wikipedia.org/wiki/Interval_estimate
http://en.wikipedia.org/wiki/Point_estimate


confidence interval for the proportion in the whole population having the 

same intention on the survey date might be 38% to 42%. From the same 
data one may calculate a 95% confidence interval, which might in this case 

be 36% to 44%. A major factor determining the length of a confidence 
interval is the size of the sample used in the estimation procedure, for 

example the number of people taking part in a survey. 
 

Let X be a random sample from a probability distribution with parameters θ, 
which is a quantity to be estimated, and φ, representing quantities not of 

immediate interest. A confidence interval for the parameter θ, with 
confidence level or confidence coefficient γ, is an interval with random 

endpoints , determined by the pair of statistics (i.e., observable 
random variables) u(X) and v(X), with the property: 

 
The quantities φ in which there is no immediate interest are called nuisance 
parameters, as statistical theory still needs to find some way to deal with 

them. The number γ, with typical values close to but not greater than 1, is 
sometimes given in the form 1 − α (or as a percentage 100%·(1 − α)), 

where α is a small nonnegative number, close to 0. 
 

Here Prθ,φ is used to indicate the probability when the random variable X has 
the distribution characterised by (θ, φ). An important part of this 

specification is that the random interval (U, V) covers the unknown value θ 

with a high probability no matter what the true value of θ actually is. 
Note that here Prθ,φ need not refer to an explicitly given parameterised 

family of distributions, although it often does. Just as the random variable X 
notionally corresponds to other possible realizations of x from the same 

population or from the same version of reality, the parameters (θ, φ) 
indicate that we need to consider other versions of reality in which the 

distribution of X might have different characteristics. 
 

In a specific situation, when x is the outcome of the sample X, the interval 
(u(x),v(x)) is also referred to as a confidence interval for θ. Note that it is no 

longer possible to say that the (observed) interval (u(x),v(x)) has probability 
γ to contain the parameter θ. This observed interval is just one realization of 

all possible intervals for which the probability statement holds. 
 

Intervals for random outcomes 

Confidence intervals can be defined for random quantities as well as for fixed 
quantities as in the above. See prediction interval. For this, consider an 

additional single-valued random variable Y which may or may not be 
statistically dependent on  X. Then the rule for constructing the interval 

(u(x), v(x)) provides a confidence interval for the as-yet-to-be observed 
value y of Y if 
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Here Prθ,φ is used to indicate the probability over the joint distribution of the 
random variables (X, Y) when this is characterised by parameters (θ, φ). 

 
Approximate confidence intervals 

For non-standard applications it is sometimes not possible to find rules for 
constructing confidence intervals that have exactly the required properties. 

But practically useful intervals can still be found. The coverage probability 

c(θ, φ) for a random interval is defined by 

 
and the rule for constructing the interval may be accepted as providing a 
confidence interval if 

 
to an acceptable level of approximation. 

 
Comparison to Bayesian interval estimates 

A Bayesian interval estimate is called a credible interval. Using much of the 
same notation as above, the definition of a credible interval for the unknown 

true value of θ is, for a given α, 

 
Here Θ is used to emphasize that the unknown value of θ is being treated as 
a random variable. The definitions of the two types of intervals may be 

compared as follows. 

 The definition of a confidence interval involves probabilities calculated 
from the distribution of X for given (θ, φ) (or conditional on these 

values) and the condition needs to hold for all values of (θ, φ). 
 

 The definition of a credible interval involves probabilities calculated 
from the distribution of Θ conditional on the observed values of X = x 

and marginalised (or averaged) over the values of Φ, where this last 
quantity is the random variable corresponding to the uncertainty about 

the nuisance parameters in φ. 
 

 
Note that the treatment of the nuisance parameters above is often omitted 

from discussions comparing confidence and credible intervals but it is 
markedly different between the two cases. 

In some simple standard cases, the intervals produced as confidence and 

credible intervals from the same data set can be identical. They are very 
different if informative prior information is included in the Bayesian analysis; 

and may be very different for some parts of the space of possible data even 
if the Bayesian prior is relatively uninformative. 
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Desirable properties 
When applying standard statistical procedures, there will often be standard 

ways of constructing confidence intervals. These will have been devised so 
as to meet certain desirable properties, which will hold given that the 

assumptions on which the procedure rely are true. These desirable 
properties may be described as: validity, optimality and invariance. Of these 

"validity" is most important, followed closely by "optimality". "Invariance" 
may be considered as a property of the method of derivation of a confidence 

interval rather than of the rule for constructing the interval. In non-standard 
applications, the same desirable properties would be sought. 

 Validity. This means that the nominal coverage probability (confidence 
level) of the confidence interval should hold, either exactly or to a 

good approximation. 
 

 Optimality. This means that the rule for constructing the confidence 

interval should make as much use of the information in the data-set as 
possible. Recall that one could throw away half of a dataset and still be 

able to derive a valid confidence interval. One way of assessing 
optimality is by the length of the interval, so that a rule for 

constructing a confidence interval is judged better than another if it 
leads to intervals whose lengths are typically shorter. 

 
 Invariance. In many applications the quantity being estimated might 

not be tightly defined as such. For example, a survey might result in 
an estimate of the median income in a population, but it might equally 

be considered as providing an estimate of the logarithm of the median 
income, given that this is a common scale for presenting graphical 

results. It would be desirable that the method used for constructing a 
confidence interval for the median income would give equivalent 

results when applied to constructing a confidence interval for the 

logarithm of the median income: specifically the values at the ends of 
the latter interval would be the logarithms of the values at the ends of 

former interval. 
 

Methods of derivation 
For non-standard applications, there are several routes that might be taken 

to derive a rule for the construction of confidence intervals. Established rules 
for standard procedures might be justified or explained via several of these 

routes. Typically a rule for constructing confidence intervals is closely tied to 
a particular way of finding a point estimate of the quantity being considered. 

 
Statistics 
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This is closely related to the method of moments for estimation. A 

simple example arises where the quantity to be estimated is the mean, 
in which case a natural estimate is the sample mean. The usual 

arguments indicate that the sample variance can be used to estimate 
the variance of the sample mean. A naive confidence interval for the 

true mean can be constructed centered on the sample mean with a 
width which is a multiple of the square root of the sample variance. 

Likelihood theory 
Where estimates are constructed using the maximum likelihood 

principle, the theory for this provides two ways of constructing 
confidence intervals or confidence regions for the estimates. 

 
Estimating equations 

The estimation approach here can be considered as both a 
generalization of the method of moments and a generalization of the 

maximum likelihood approach. There are corresponding 

generalizations of the results of maximum likelihood theory that allow 
confidence intervals to be constructed based on estimates derived 

from estimating equations.[citation needed] 
 

Via significance testing 
If significance tests are available for general values of a parameter, 

then confidence intervals/regions can be constructed by including in 
the 100p% confidence region all those points for which the significance 

test of the null hypothesis that the true value is the given value is not 
rejected at a significance level of (1-p). 

 
Bootstrapping 

In situations where the distributional assumptions for that above 
methods are uncertain or violated, resampling methods allow 

construction of confidence intervals or prediction intervals. The 

observed data distribution and the internal correlations are used as the 
surrogate for the correlations in the wider population. 
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Examples 
Practical example 

 
 

A machine fills cups with margarine, and is supposed to be adjusted so that 
the content of the cups is 250 g of margarine. As the machine cannot fill 

every cup with exactly 250 g, the content added to individual cups shows 
some variation, and is considered a random variable X. This variation is 

assumed to be normally distributed around the desired average of 250 g, 
with a standard deviation of 2.5 g. To determine if the machine is 

adequately calibrated, a sample of n = 25 cups of margarine is chosen at 
random and the cups are weighed. The resulting measured masses of 

margarine are X1, ..., X25, a random sample from X. 
 

To get an impression of the expectation μ, it is sufficient to give an estimate. 
The appropriate estimator is the sample mean: 

 
The sample shows actual weights x1, ..., x25, with mean: 

 
If we take another sample of 25 cups, we could easily expect to find mass 
values like 250.4 or 251.1 grams. A sample mean value of 280 grams 

however would be extremely rare if the mean content of the cups is in fact 
close to 250 grams. There is a whole interval around the observed value 

250.2 grams of the sample mean within which, if the whole population mean 

actually takes a value in this range, the observed data would not be 
considered particularly unusual. Such an interval is called a confidence 

interval for the parameter μ. How do we calculate such an interval? The 
endpoints of the interval have to be calculated from the sample, so they are 

statistics, functions of the sample X1, ..., X25 and hence random variables 
themselves. 
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In our case we may determine the endpoints by considering that the sample 
mean X from a normally distributed sample is also normally distributed, with 

the same expectation μ, but with a standard error of: 

 
 
By standardizing, we get a random variable 

 
dependent on the parameter μ to be estimated, but with a standard normal 

distribution independent of the parameter μ. Hence it is possible to find 
numbers −z and z, independent of μ, between which Z lies with probability 

1 − α, a measure of how confident we want to be. We take 1 − α = 0.95. So 
we have: 

 
The number z follows from the cumulative distribution function, in this case 

the cumulative normal distribution function: 

 
and we get: 

 
This might be interpreted as: with probability 0.95 we will find a confidence 
interval in which we will meet the parameter μ between the stochastic 

endpoints 

 
and 

 
This does not mean that there is 0.95 probability of meeting the parameter μ 

in the calculated interval. Every time the measurements are repeated, there 
will be another value for the mean X of the sample. In 95% of the cases μ 

will be between the endpoints calculated from this mean, but in 5% of the 
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cases it will not be. The actual confidence interval is calculated by entering 

the measured masses in the formula. Our 0.95 confidence interval becomes: 

 

 
 

The vertical line segments represent 50 realizations of a confidence interval 
for μ. 

As the desired value 250 of μ is within the resulted confidence interval, there 
is no reason to believe the machine is wrongly calibrated. 

 
The calculated interval has fixed endpoints, where μ might be in between (or 

not). Thus this event has probability either 0 or 1. One cannot say: "with 
probability (1 − α) the parameter μ lies in the confidence interval." One only 

knows that by repetition in 100(1 − α) % of the cases, μ will be in the 
calculated interval. In 100α % of the cases however it does not. And 

unfortunately one does not know in which of the cases this happens. That is 
why one can say: "with confidence level 100(1 − α) %, μ lies in the 

confidence interval." 

 
The figure on the right shows 50 realizations of a confidence interval for a 

given population mean μ. If we randomly choose one realization, the 
probability is 95% we end up having chosen an interval that contains the 

parameter; however we may be unlucky and have picked the wrong one. We 
will never know; we are stuck with our interval. 

 
Theoretical example 

Suppose X1, ..., Xn are an independent sample from a normally distributed 
population with (parameters) mean μ and variance ζ2. Let 

 

 
be the well known statistics, sample mean and sample variance. Then 

 
has a Student's t-distribution with n − 1 degrees of freedom. Note that the 

distribution of T does not depend on the values of the unobservable 
parameters μ and ζ2; i.e., it is a pivotal quantity. Suppose we wanted to 
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calculate a 90% confidence interval for μ. Then, denoting c as the 95th 

percentile of this distribution, 

 
(Note: "95th" and "0.9" are correct in the preceding expressions. There is a 

5% chance that T will be less than −c and a 5% chance that it will be larger 

than +c. Thus, the probability that T will be between −c and +c is 90%.) 
Consequently 

 
and we have a theoretical (stochastic) 90% confidence interval for μ. 

After observing the sample we find values x for X and s for S, from which we 
compute the confidence interval 

 
an interval with fixed numbers as endpoints, of which we can no more say 

there is a certain probability it contains the parameter μ. Either μ is in this 
interval or isn't. 

 

Relation to hypothesis testing 
While the formulations of the notions of confidence intervals and of 

statistical hypothesis testing are distinct they are in some senses related and 
to some extent complementary. While not all confidence intervals are 

constructed in this way, one general purpose approach to constructing 
confidence intervals is to define a 100(1 − α)% confidence interval to consist 

of all those values θ0 for which a test of the hypothesis θ = θ0 is not rejected 
at a significance level of 100α%. Such an approach may not always be 

available since it presupposes the practical availability of an appropriate 
significance test. Naturally, any assumptions required for the significance 

test would carry over to the confidence intervals. 
 

It may be convenient to make the general correspondence that parameter 
values within a confidence interval are equivalent to those values that would 

not be rejected by an hypothesis test, but this would be dangerous. In many 

instances the confidence intervals that are quoted are only approximately 
valid, perhaps derived from "plus or minus twice the standard error", and 

the implications of this for the supposedly corresponding hypothesis tests 
are usually unknown. 

 
Meaning and interpretation 

For users of frequentist methods, various interpretations of a confidence 
interval can be given. 

 The confidence interval can be expressed in terms of samples (or 
repeated samples): "Were this procedure to be repeated on multiple 

http://en.wikipedia.org/wiki/Percentile
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing


samples, the calculated confidence interval (which would differ for 

each sample) would encompass the true population parameter 90% of 
the time." Note that this need not be repeated sampling from the 

same population, just repeated sampling.  
 

 The explanation of a confidence interval can amount to something like: 
"The confidence interval represents values for the population 

parameter for which the difference between the parameter and the 
observed estimate is not statistically significant at the 10% level". In 

fact, this relates to one particular way in which a confidence interval 
may be constructed. 

 
 

 The probability associated with a confidence interval may also be 
considered from a pre-experiment point of view, in the same context 

in which arguments for the random allocation of treatments to study 

items are made. Here the experimenter sets out the way in which they 
intend to calculate a confidence interval and know, before they do the 

actual experiment, that the interval they will end up calculating has a 
certain chance of covering the true but unknown value. This is very 

similar to the "repeated sample" interpretation above, except that it 
avoids relying on considering hypothetical repeats of a sampling 

procedure that may not be repeatable in any meaningful sense. See 
Neyman construction. 

 
 

In each of the above, the following applies: If the true value of the 
parameter lies outside the 90% confidence interval once it has been 

calculated, then an event has occurred which had a probability of 10% (or 
less) of happening by chance. 

 

Meaning of the term "confidence" 
There is a difference in meaning between the common usage of the word 

"confidence" and its statistical usage, which is often confusing to the 
layman, and this is one of the critiques of confidence intervals, namely that 

in application by non-statisticians, the term "confidence" is misleading. 
 

In common usage, a claim to 95% confidence in something is normally 
taken as indicating virtual certainty. In statistics, a claim to 95% confidence 

simply means that the researcher has seen something occur that happens 
only one time in 20 or less. If one were to roll two dice and get double six 

(which happens 1/36th of the time, or about 3%), few would claim this as 
proof that the dice were fixed, although statistically speaking one could have 

97% confidence that they were. Similarly, the finding of a statistical link at 
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95% confidence is not proof, nor even very good evidence, that there is any 

real connection between the things linked. 
 

When a study involves multiple statistical tests, people tend to assume that 
the confidence associated with individual tests is the confidence one should 

have in the results of the study itself. In fact, the results of all the statistical 
tests conducted during a study must be judged as a whole in determining 

what confidence one may place in the positive links it produces. For 
example, say a study is conducted which involves 40 statistical tests at 95% 

confidence, and which produces 3 positive results. Each test has a 5% 
chance of producing a false positive, so such a study will produce 3 false 

positives about two times in three. Thus the confidence one can have that 
any of the study's positive conclusions are correct is only about 32%, well 

below the 95% the researchers have set as their standard of acceptance. 
 

Alternatives and critiques 

Main articles: Interval estimation, Credible interval, and Prediction interval 
Confidence intervals are one method of interval estimation, and the most 

widely used in frequentist statistics. An analogous concept in Bayesian 
statistics is credible intervals, while an alternative frequentist method is that 

of prediction intervals which, rather than estimating parameters, estimate 
the outcome of future samples. For other approaches to expressing 

uncertainty using intervals, see interval estimation. 
 

There is disagreement about which of these methods produces the most 
useful results: the mathematics of the computations are rarely in question – 

confidence intervals being based on sampling distributions, credible intervals 
being based on Bayes' theorem – but the application of these methods, the 

utility and interpretation of the produced statistics, is debated. 
 

Users of Bayesian methods, if they produced an interval estimate, would in 

contrast to confidence intervals, want to say "My degree of belief that the 
parameter is in fact in this interval is 90%," while users of prediction 

intervals would instead say "I predict that the next sample will fall in this 
interval 90% of the time." 

 
Confidence intervals are an expression of probability and are subject to the 

normal laws of probability. If several statistics are presented with confidence 
intervals, each calculated separately on the assumption of independence, 

that assumption must be honoured or the calculations will be rendered 
invalid. For example, if a researcher generates a set of statistics with 

intervals and selects some of them as significant, the act of selecting 
invalidates the calculations used to generate the intervals. 
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9.12 Confidence Intervals for a Proportion 

 
An approximate confidence interval for a population mean can be 

constructed for random variables that are not normally distributed in the 
population, relying on the central limit theorem, if the sample sizes and 

counts are big enough. The formulae are identical to the case above (where 
the sample mean is actually normally distributed about the population 

mean).  
 

The approximation will be quite good with only a few dozen observations in 
the sample if the probability distribution of the random variable is not too 

different from the normal distribution (e.g. its cumulative distribution 
function does not have any discontinuities and its skewness is moderate). 

 
One type of sample mean is the mean of an indicator variable, which takes 

on the value 1 for true and the value 0 for false. The mean of such a 

variable is equal to the proportion that have the variable equal to one (both 
in the population and in any sample). This is a useful property of indicator 

variables, especially for hypothesis testing. To apply the central limit 
theorem, one must use a large enough sample. A rough rule of thumb is that 

one should see at least 5 cases in which the indicator is 1 and at least 5 in 
which it is 0. Confidence intervals constructed using the above formulae may 

include negative numbers or numbers greater than 1, but proportions 
obviously cannot be negative or exceed 1. Additionally, sample proportions 

can only take on a finite number of values, so the central limit theorem and 
the normal distribution are not the best tools for building a confidence 

interval. See "Binomial proportion confidence interval" for better methods 
which are specific to this case. 

 
A researcher wants to estimate the proportion of people who report the side 

effect of nausea when taking a drug to reduce anxiety. Of 25 people who 

take the drug, 8 report nausea. In this sample, therefore, 0.32 of the 
patients reported nausea. Most likely the researcher would construct a 

confidence interval on the population proportion. The procedure for 
constructing a confidence interval assumes that the sampling distribution of 

p is normal. Since the sample proportion, p, can be thought of as the mean 
of N scores, each score being either zero or one, the central limit theorem is 

applicable. This theorem states that as N increases, the sampling distribution 
of the mean (p in this case) approaches a normal distribution. But how large 

an N is big enough? The population proportion, Pi, is another factor that 
affects the shape of the distribution. The closer Pi is to 0.5, the more normal 

the sampling distribution. 
 

This applet allows you to explore the validity of confidence intervals on a 
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proportion with various values of N and Pi. After you specify N, Pi, the level 

of confidence, and the number of simulations you wish to perform, the 
applet samples data according to your specification and computes a 

confidence interval for each simulation. The proportion of simulations for 
which the confidence interval contains Pi is recorded. If the method for 

constructing confidence intervals is valid, then about 95% of the 95% 
confidence intervals should contain Pi. 

 

9.13 Sample Size Determination With A Given 

Margin Of Error  Sample Size Needed For 

Specified Margin Of Error 

 

The general formula for a confidence interval is  
estimate plus/minus (critical value )(standard deviation of the estimate ) 

A 95% confidence interval for proportions has the form p(hat) 

plus/minus 1.96 ÷[((p(hat))(1-p(hat))/N] where N is the sample size and 
p(hat) is the sample proportion. 

Since 1.96 is approximately 2, we will use 2 in what follows to simply 
computations. 

If the population proportion parameter is p, the margin of error, m, for a 
95% confidence interval can be calculated using the formula m = 2 

÷[p(1-p)/N] 
 

When sampling, p is replaced by p(hat), the sample proportion, to compute 
m. 

We now ask the question:  
 

What sample size is needed if one wants a specific margin of error?  
Solving the above equation for N yields m2/4 = p(1-p)/N ==> N = 4p(1-

p)/m2.  

YIKE! We face a "Catch 22" situation. We want N, and we know m, but we 
don't know a value for p, and we can't get such a value until we actually 

take a sample.  
 

We get around this dilemma by finding the value of p that will maximize N. 
Since 4 and m2 are known constants, we need only maximize y = p(1-p) = p 

- p2. This is simply a parabola that opens downward. We need only find the 
vertex. We can take a derivative and note that dy/dp = 1 - 2p which has 

value of 0 when p = 1/2. In other words, looking at the equation 
N = 4p(1-p)/m2 

we will get the largest possible value of N when we substitute p = 1/2. Note 
that is the substitution is made, we get N = 4(1/2)(1/2)/m2 = 1/m2, a very 



simple formula. In other words, if we want a 95% confidence interval and 

know m, margin of error, we can determine the sample size needed for the 
specified m. For instance, if we want a margin of error = 2%, then the 

sample size required is 1/(.02)2 = 2,500. 
 

What is shown in the box below is a published survey related to the Persian 
Gulf War some years ago. 

Would you support or oppose U.S. forces resuming action to force 
Saddam from power? 

54% Support  
37% Oppose 

For this Newsweek Poll, the Gallop Organization interviewed a national 
sample of 751 adults by telephone April 4-5. The margin of error is plus or 

minus 4 percentage points. Some "Don't Know" and other responses not 
shown 

 

Let's do some computations: 
If we were to compute the margin of error using 54%, we would get 2 

÷[(.54)(.46)/751] = 0.0363736. Rounding "out" to the nearest integer 
percent, we would get the 4% stated in the survey results. If one calculates 

the margin of error using 37%, one obtains 2 ÷[(.37)(.63)/751] = 
0.0352356. Again, if we round "out," we get 4%. 

 
If we wanted a margin of error = 4%, the sample size needed would be 

1/(.04)2 = 625. A margin of error of 3% would require a sample size = 
1/(.03)2 = 1,111. What is reported in the survey "jives" with these 

calculations. 
 

While published surveys such as the one above do not generally talk about a 
95% confidence interval, the reported margin of error does relate to such an 

interval, as has been demonstrated. Using the information provided in the 

survey above, the 95% confidence interval for those support using action to 
remove Saddam from power is [50%, 58%]. The corresponding 95% 

confidence interval for those who oppose is [33%,41%]. 
 

Calculating the Sample Size  
The sample size, in this case, refers to the number of children to be included 

in the survey. 
 

Step 1: Base Sample-size Calculation 
The appropriate sample size for a population-based survey is determined 

largely by three factors:  
(i) the estimated prevalence of the variable of interest – chronic malnutrition 

in this instance,  



(ii) the desired level of confidence and  

(iii) the acceptable margin of error. 
 

For a survey design based on a simple random sample, the sample size 
required can be calculated according to the following formula. 

Formula:  

n= 
t² x p(1-

p) 
  m² 

Description:  
n = required sample size 

t = confidence level at 95% (standard value of 1.96) 
p = estimated prevalence of malnutrition in the project area 

m = margin of error at 5% (standard value of 0.05) 
 

Example 

In the Al Haouz project in Morocco, it has been estimated that roughly 30% 
(0.3) of the children in the project area suffer from chronic malnutrition. This 

figure has been taken from national statistics on malnutrition in rural areas. 
Use of the standard values listed above provides the following calculation. 

Calculation: 
 

9.14 Hypothesis Testing 

A statistical hypothesis test is a method of making decisions using data, 

whether from a controlled experiment or an observational study (not 
controlled). In statistics, a result is called statistically significant if it is 

unlikely to have occurred by chance alone, according to a pre-determined 
threshold probability, the significance level. The phrase "test of significance" 

was coined by Ronald Fisher: "Critical tests of this kind may be called tests 
of significance, and when such tests are available we may discover whether 

a second sample is or is not significantly different from the first." 

 
Hypothesis testing is sometimes called confirmatory data analysis, in 

contrast to exploratory data analysis. In frequency probability, these 
decisions are almost always made using null-hypothesis tests (i.e., tests that 

answer the question Assuming that the null hypothesis is true, what is the 
probability of observing a value for the test statistic that is at least as 

extreme as the value that was actually observed?) One use of hypothesis 
testing is deciding whether experimental results contain enough information 

to cast doubt on conventional wisdom. 
 

http://en.wikipedia.org/wiki/Controlled_experiment
http://en.wikipedia.org/wiki/Observational_study
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Luck
http://en.wikipedia.org/wiki/Significance_level
http://en.wikipedia.org/wiki/Ronald_Fisher
http://en.wikipedia.org/wiki/Exploratory_data_analysis
http://en.wikipedia.org/wiki/Frequency_probability
http://en.wikipedia.org/wiki/Null-hypothesis


A result that was found to be statistically significant is also called a positive 

result; conversely, a result that is not unlikely under the null hypothesis is 
called a negative result or a null result. 

 
Statistical hypothesis testing is a key technique of frequentist statistical 

inference. The Bayesian approach to hypothesis testing is to base rejection 
of the hypothesis on the posterior probability. Other approaches to reaching 

a decision based on data are available via decision theory and optimal 
decisions. 

 
The following examples should solidify these ideas. 

 
Example 1 – Courtroom trial 

A statistical test procedure is comparable to a criminal trial; a defendant is 
considered not guilty as long as his guilt is not proven. The prosecutor tries 

to prove the guilt of the defendant. Only when there is enough charging 

evidence the defendant is convicted. 
 

In the start of the procedure, there are two hypotheses H0: "the defendant is 
not guilty", and H1: "the defendant is guilty". The first one is called null 

hypothesis, and is for the time being accepted. The second one is called 
alternative (hypothesis). It is the hypothesis one tries to prove. 

 
The hypothesis of innocence is only rejected when an error is very unlikely, 

because one doesn't want to convict an innocent defendant. Such an error is 
called error of the first kind (i.e. the conviction of an innocent person), and 

the occurrence of this error is controlled to be rare. As a consequence of this 
asymmetric behaviour, the error of the second kind (acquitting a person who 

committed the crime), is often rather large. 
 

 
Null Hypothesis (H0) is 
true 

He truly is not guilty 

Alternative Hypothesis (H1) 
is true 

He truly is guilty 

Accept Null 

Hypothesis 
Acquittal 

Right decision 
Wrong decision 

Type II Error 

Reject Null 
Hypothesis 

Conviction 

Wrong decision 
Type I Error 

Right decision 

 

A criminal trial can be regarded as either or both of two decision processes: 
guilty vs not guilty or evidence vs a threshold ("beyond a reasonable 

doubt"). In one view, the defendant is judged; in the other view the 
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performance of the prosecution (which bears the burden of proof) is judged. 

A hypothesis test can be regarded as either a judgment of a hypothesis or as 
a judgment of evidence. 

 
Example 2 – Clairvoyant card game 

A person (the subject) is tested for clairvoyance. He is shown the reverse of 
a randomly chosen playing card 25 times and asked which of the four suits it 

belongs to. The number of hits, or correct answers, is called X. 
 

As we try to find evidence of his clairvoyance, for the time being the null 
hypothesis is that the person is not clairvoyant. The alternative is, of course: 

the person is (more or less) clairvoyant. 
 

If the null hypothesis is valid, the only thing the test person can do is guess. 
For every card, the probability (relative frequency) of any single suit 

appearing is 1/4. If the alternative is valid, the test subject will predict the 

suit correctly with probability greater than 1/4. We will call the probability of 
guessing correctly p. The hypotheses, then, are: 

 null hypothesis     (just guessing) and 

 alternative hypothesis    (true clairvoyant). 
 

When the test subject correctly predicts all 25 cards, we will consider him 
clairvoyant, and reject the null hypothesis. Thus also with 24 or 23 hits. With 

only 5 or 6 hits, on the other hand, there is no cause to consider him so. But 

what about 12 hits, or 17 hits? What is the critical number, c, of hits, at 
which point we consider the subject to be clairvoyant? How do we determine 

the critical value c? It is obvious that with the choice c=25 (i.e. we only 
accept clairvoyance when all cards are predicted correctly) we're more 

critical than with c=10. In the first case almost no test subjects will be 
recognized to be clairvoyant, in the second case, certain number will pass 

the test. In practice, one decides how critical one will be. That is, one 
decides how often one accepts an error of the first kind – a false positive, or 

Type I error. With c = 25 the probability of such an error is: 

 
and hence, very small. The probability of a false positive is the probability of 
randomly guessing correctly all 25 times. 

 

Being less critical, with c=10, gives: 

 
Thus, c = 10 yields a much greater probability of false positive. 

Before the test is actually performed, the desired probability of a Type I 

error is determined. Typically, values in the range of 1% to 5% are selected. 
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Depending on this desired Type 1 error rate, the critical value c is calculated. 

For example, if we select an error rate of 1%, c is calculated thus: 

 
 

From all the numbers c, with this property, we choose the smallest, in order 

to minimize the probability of a Type II error, a false negative. For the above 
example, we select: c = 12. 

 
But what if the subject did not guess any cards at all? Having zero correct 

answers is clearly an oddity too. The probability of guessing incorrectly once 
is equal to p' = (1 − p) = 3/4. Using the same approach we can calculate 

that probability of randomly calling all 25 cards wrong is: 
 

 
This is highly unlikely (less than 1 in a 1000 chance). While the subject can't 

guess the cards correctly, dismissing H0 in favour of H1 would be an error. In 
fact, the result would suggest a trait on the subject's part of avoiding calling 

the correct card. A test of this could be formulated: for a selected 1% error 

rate the subject would have to answer correctly at least twice, for us to 
believe that card calling is based purely on guessing. 

 
Example 3 – Radioactive suitcase 

As an example, consider determining whether a suitcase contains some 
radioactive material. Placed under a Geiger counter, it produces 10 counts 

per minute. The null hypothesis is that no radioactive material is in the 
suitcase and that all measured counts are due to ambient radioactivity 

typical of the surrounding air and harmless objects. We can then calculate 
how likely it is that we would observe 10 counts per minute if the null 

hypothesis were true. If the null hypothesis predicts (say) on average 9 
counts per minute and a standard deviation of 1 count per minute, then we 

say that the suitcase is compatible with the null hypothesis (this does not 
guarantee that there is no radioactive material, just that we don't have 

enough evidence to suggest there is). On the other hand, if the null 

hypothesis predicts 3 counts per minute and a standard deviation of 1 count 
per minute, then the suitcase is not compatible with the null hypothesis, and 

there are likely other factors responsible to produce the measurements. 
 

The test described here is more fully the null-hypothesis statistical 
significance test. The null hypothesis represents what we would believe by 

default, before seeing any evidence. Statistical significance is a possible 
finding of the test, declared when the observed sample is unlikely to have 

occurred by chance if the null hypothesis were true. The name of the test 
describes its formulation and its possible outcome. One characteristic of the 
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test is its crisp decision: to reject or not reject the null hypothesis. A 

calculated value is compared to a threshold, which is determined from the 
tolerable risk of error. 

 
Example 4 – Lady tasting tea 

The following example is summarized from Fisher, and is known as the Lady 
tasting tea example. Fisher thoroughly explained his method in a proposed 

experiment to test a Lady's claimed ability to determine the means of tea 
preparation by taste. The article is less than 10 pages in length and is 

notable for its simplicity and completeness regarding terminology, 
calculations and design of the experiment. 

 
The example is loosely based on an event in Fisher's life. The Lady proved 

him wrong.  
 The experiment provided the Lady with 8 cups of tea at one time, 4 

prepared with each method, presented in random order. She was to 

select the 4 cups prepared by one method.  
o This offered the Lady the advantage of judging cups by 

comparison. 
o The Lady was fully informed of the experimental method. 

 The null hypothesis was that the Lady had no such ability. 
 The test statistic was a simple count of the number of successes in 

selecting the 4 cups. 
 The null hypothesis distribution was computed by the number of 

permutations. The number of selected permutations equaled the 
number of unselected permutations. 

Tea-Tasting Distribution 

Success count Permutations of selection 
Number of 
permutations 

0 oooo 1 × 1 = 1 

1 ooox, ooxo, oxoo, xooo 4 × 4 = 16 

2 
ooxx, oxox, oxxo, xoxo, 

xxoo, xoox 
6 × 6 = 36 

3 oxxx, xoxx, xxox, xxxo 4 × 4 = 16 

4 xxxx 1 × 1 = 1 

 Total 70 

 The critical region was the single case of 4 successes of 4 possible 
based on a conventional probability criterion (< 5%; 1 of 70 ≈ 1.4%). 

 Fisher asserted that no alternative hypothesis was (ever) required. 
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If and only if the Lady properly categorized all 8 cups was Fisher willing to 

reject the null hypothesis – effectively acknowledging the Lady's ability with 
> 98% confidence (but without quantifying her ability). Fisher later 

discussed the benefits of more trials and repeated tests. 
 

The testing process 
In the statistical literature, statistical hypothesis testing plays a fundamental 

role.[6] The usual line of reasoning is as follows: 
1. We start with a research hypothesis of which the truth is unknown. 

 
 The first step is to state the relevant null and alternative 

hypotheses. This is important as mis-stating the hypotheses will 
muddy the rest of the process. Specifically, the null hypothesis allows 

to attach an attribute: it should be chosen in such a way that it allows 
us to conclude whether the alternative hypothesis can either be 

accepted or stays undecided as it was before the test.  

 
 

 The second step is to consider the statistical assumptions being made 
about the sample in doing the test; for example, assumptions about 

the statistical independence or about the form of the distributions of 
the observations. This is equally important as invalid assumptions will 

mean that the results of the test are invalid. 
 

 Decide which test is appropriate, and stating the relevant test 
statistic T. 

 
 Derive the distribution of the test statistic under the null hypothesis 

from the assumptions. In standard cases this will be a well-known 
result. For example the test statistics may follow a Student's t 

distribution or a normal distribution. 

 
 The distribution of the test statistic partitions the possible values of T 

into those for which the null-hypothesis is rejected, the so called 
critical region, and those for which it is not. 

 
 Compute from the observations the observed value tobs of the test 

statistic T. 
 

 
 Decide to either fail to reject the null hypothesis or reject it in favor 

of the alternative. The decision rule is to reject the null hypothesis H0 
if the observed value tobs is in the critical region, and to accept or "fail 

to reject" the hypothesis otherwise. 
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It is important to note the philosophical difference between accepting the 
null hypothesis and simply failing to reject it. The "fail to reject" terminology 

highlights the fact that the null hypothesis is assumed to be true from the 
start of the test; if there is a lack of evidence against it, it simply continues 

to be assumed true. The phrase "accept the null hypothesis" may suggest it 
has been proved simply because it has not been disproved, a logical fallacy 

known as the argument from ignorance. Unless a test with particularly high 
power is used, the idea of "accepting" the null hypothesis may be 

dangerous. Nonetheless the terminology is prevalent throughout statistics, 
where its meaning is well understood. 

 
Alternatively, if the testing procedure forces us to reject the null hypothesis 

(H-null), we can accept the alternative hypothesis (H-alt) and we conclude 
that the research hypothesis is supported by the data. This fact expresses 

that our procedure is based on probabilistic considerations in the sense we 

accept that using another set could lead us to a different conclusion. 
 

Definition of terms 
The following definitions are mainly based on the exposition in the book by 

Lehmann and Romano:  
 

Statistical hypothesis  
A statement about the parameters describing a population (not a 

sample). 
 

Statistic  
A value calculated from a sample, often to summarize the sample for 

comparison purposes. 
 

Simple hypothesis  

Any hypothesis which specifies the population distribution completely. 
 

Composite hypothesis  
Any hypothesis which does not specify the population distribution 

completely. 
 

Null hypothesis  
A simple hypothesis associated with a contradiction to a theory one 

would like to prove. 
 

Alternate hypothesis  
A hypothesis (often composite) associated with a theory one would like 

to prove. 

http://en.wikipedia.org/wiki/Fallacy
http://en.wikipedia.org/wiki/Argument_from_ignorance
http://en.wikipedia.org/wiki/Statistical_power


 

Statistical test  
A decision function that takes its values in the set of hypotheses. 

 
Region of acceptance  

The set of values for which we fail to reject the null hypothesis. 
 

Region of rejection / Critical region 
The set of values of the test statistic for which the null hypothesis is 

rejected. 
 

Power of a test (1 − β) 
The test's probability of correctly rejecting the null hypothesis. The 

complement of the false negative rate, β. 
 

Size / Significance level of a test (α) 

For simple hypotheses, this is the test's probability of incorrectly 
rejecting the null hypothesis. The false positive rate. For composite 

hypotheses this is the upper bound of the probability of rejecting the 
null hypothesis over all cases covered by the null hypothesis. 

 
p-value 

The probability, assuming the null hypothesis is true, of observing a 
result at least as extreme as the test statistic. 

 
Statistical significance test  

A predecessor to the statistical hypothesis test. An experimental result 
was said to be statistically significant if a sample was sufficiently 

inconsistent with the (null) hypothesis. This was variously considered 
common sense, a pragmatic heuristic for identifying meaningful 

experimental results, a convention establishing a threshold of 

statistical evidence or a method for drawing conclusions from data. 
The statistical hypothesis test added mathematical rigor and 

philosophical consistency to the concept by making the alternative 
hypothesis explicit. The term is loosely used to describe the modern 

version which is now part of statistical hypothesis testing. 
 

A statistical hypothesis test compares a test statistic (z or t for examples) to 
a threshold. The test statistic (the formula found in the table below) is based 

on optimality. For a fixed level of Type I error rate, use of these statistics 
minimizes Type II error rates (equivalent to maximizing power). The 

following terms describe tests in terms of such optimality: 
 

Most powerful test 
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For a given size or significance level, the test with the greatest power. 

 
Uniformly most powerful test (UMP) 

A test with the greatest power for all values of the parameter being 
tested. 

Consistent test 
When considering the properties of a test as the sample size grows, a 

test is said to be consistent if, for a fixed size of test, the power 
against any fixed alternative approaches 1 in the limit.  

 
Unbiased test  

For a specific alternative hypothesis, a test is said to be unbiased 
when the probability of rejecting the null hypothesis is not less than 

the significance level when the alternative is true and is less than or 
equal to the significance level when the null hypothesis is true. 

 

Conservative test  
A test is conservative if, when constructed for a given nominal 

significance level, the true probability of incorrectly rejecting the null 
hypothesis is never greater than the nominal level. 

 
Uniformly most powerful unbiased (UMPU)  

A test which is UMP in the set of all unbiased tests. 
 

Interpretation 
The direct interpretation is that if the p-value is less than the required 

significance level, then we say the null hypothesis is rejected at the given 
level of significance. Criticism on this interpretation can be found in the 

corresponding section. 
 

Common test statistics 

In the table below, the symbols used are defined at the bottom of the table. 
Many other tests can be found in other articles. 

Name Formula Assumptions or notes 

One-sample 
z-test  

(Normal population or n > 30) 
and ζ known. 

(z is the distance from the 
mean in relation to the 

standard deviation of the 
mean). For non-normal 

distributions it is possible to 
calculate a minimum 

proportion of a population that 

http://en.wikipedia.org/wiki/Uniformly_most_powerful_test
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing#Criticism
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing#Criticism
http://en.wikipedia.org/wiki/Category:Statistical_tests
http://en.wikipedia.org/wiki/Z-test


falls within k standard 
deviations for any k : 

Two-sample 

z-test 
 

Normal population and 

independent observations and 
ζ1 and ζ2 are known 

Two-sample 
pooled t-test, 

equal 
variances* 

 

 

 

(Normal populations or 
n1 + n2 > 40) and independent 

observations and ζ1 = ζ2 and 
ζ1 and ζ2 unknown 

Two-sample 
unpooled t-

test, unequal 
variances* 

 

 

(Normal populations or 
n1 + n2 > 40) and independent 

observations and ζ1 ≠ ζ2 and 
ζ1 and ζ2 unknown 

One-
proportion z-

test  

n .p0 > 10 and n (1 − p0) > 10 
and it is a SRS (Simple 

Random Sample), see notes. 

Two-
proportion z-

test, pooled 
for d0 = 0 

 

 

n1 p1 > 5 and n1(1 − p1) > 5 
and n2 p2 > 5 and n2(1 − p2) 

> 5 and independent 
observations, see notes. 

Two-

proportion z-
test, 

unpooled for 
| d0 | > 0 

 

n1 p1 > 5 and n1(1 − p1) > 5 
and n2 p2 > 5 and n2(1 − p2) 

> 5 and independent 
observations, see notes. 

One-sample 

chi-square 
test  

One of the following  

• All expected counts are at 
least 5 

• All expected counts are > 1 
and no more than 20% of 

expected counts are less 
than 5 

http://en.wikipedia.org/wiki/T-test
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*Two-sample 
F test for 

equality of 
variances 

 

Arrange so > and reject H0 
for F > F(α / 2,n1 − 1,n2 − 1) 

In general, the subscript 0 indicates a value taken from the null hypothesis, 

H0, which should be used as much as possible in constructing its test 
statistic. ... Definitions of other symbols:  

 α, the probability of 

Type I error 
(rejecting a null 

hypothesis when it 
is in fact true) 

 n = sample size 
 n1 = sample 1 size 

 n2 = sample 2 size 
 = sample mean 

 μ0 = hypothesized 
population mean 

 μ1 = population 1 
mean 

 μ2 = population 2 
mean 

 ζ = population 

standard deviation 
 ζ2 = population 

variance 

 s = sample 

standard 
deviation 

 s2 = sample 
variance 

 s1 = sample 1 
standard 

deviation 
 s2 = sample 2 

standard 
deviation 

 t = t statistic 
 df = degrees of 

freedom 

 = sample 

mean of 
differences 

 d0 = 
hypothesized 

population 

mean 
difference 

 sd = standard 
deviation of 

differences 

 = x/n = sample 
proportion, unless 

specified otherwise 
 p0 = hypothesized 

population 

proportion 
 p1 = proportion 1 

 p2 = proportion 2 
 dp = hypothesized 

difference in 
proportion 

 min{n1,n2} = 
minimum of n1 and 

n2 
 x1 = n1p1 

 x2 = n2p2 
 χ2 = Chi-squared 

statistic 
 F = F statistic 

 

 

 
 

Origins 
Hypothesis testing is largely the product of Ronald Fisher, Jerzy Neyman, 

Karl Pearson and (son) Egon Pearson. Fisher was an agricultural statistician 

who emphasized rigorous experimental design and methods to extract a 
result from few samples assuming Gaussian distributions. Neyman (who 

teamed with the younger Pearson) emphasized mathematical rigor and 
methods to obtain more results from many samples and a wider range of 

distributions. Modern hypothesis testing is an (extended) hybrid of the 
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Fisher vs Neyman/Pearson formulation, methods and terminology developed 

in the early 20th century. 
 

Importance 
Statistical hypothesis testing plays an important role in the whole of 

statistics and in statistical inference. For example, Lehmann (1992) in a 
review of the fundamental paper by Neyman and Pearson (1933) says: 

"Nevertheless, despite their shortcomings, the new paradigm formulated in 
the 1933 paper, and the many developments carried out within its 

framework continue to play a central role in both the theory and practice of 
statistics and can be expected to do so in the foreseeable future". 

 
Significance testing has been the favored statistical tool in some 

experimental social sciences (over 90% of articles in the Journal of Applied 
Psychology during the early 1990s). Other fields have favored the estimation 

of parameters. Editors often consider significance as a criterion for the 

publication of scientific conclusions based on experiments with statistical 
results. 

 
Controversy 

Since significance tests were first popularized many objections have been 
voiced by prominent and respected statisticians. The volume of criticism and 

rebuttal has filled books with language seldom used in the scholarly debate 
of a dry subject. Much of the criticism was published more than 40 years 

ago. The fires of controversy have burned hottest in the field of experimental 
psychology. Nickerson surveyed the issues in the year 2000. He included 

300 references and reported 20 criticisms and almost as many 
recommendations, alternatives and supplements. The following section 

greatly condenses Nickerson's discussion, omitting many issues. 
 

Selected criticisms 

 There are numerous persistent misconceptions regarding the test and 
its results. 

 The test is a flawed application of probability theory.  
 While the data can be unlikely given the null hypothesis, the 

alternative hypothesis can be even more unlikely. (Nobody can be that 
lucky. vs. Clairvoyance is impossible.) 

 The test result is a function of sample size. 
 The test result is uninformative. 

 Statistical significance does not imply practical significance. 
 Using statistical significance as a criterion for publication results in 

problems collectively known as publication bias.  
 Published Type I errors are difficult to correct. 

 Published effect sizes are biased upward. 

http://en.wikipedia.org/wiki/Statistical_inference
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 Meta-studies are biased by the invisibility of tests which failed to reach 

significance. 
 Type II errors (false negatives) are common. 

 
Each criticism has merit, but is subject to discussion. 

 
Misuses and abuses 

The characteristics of significance tests can be abused. When the test 
statistic is close to the chosen significance level, the temptation to carefully 

treat outliers, to adjust the chosen significance level, to pick a better 
statistic or to replace a two-tailed test with a one-tailed test can be 

powerful. If the goal is to produce a significant experimental result: 
 Conduct a few tests with a large sample size. 

 Rigorously control the experimental design. 
 Publish the successful tests; Hide the unsuccessful tests. 

 Emphasize the statistical significance of the results if the practical 

significance is doubtful. 
 

If the goal is to fail to produce a significant effect: 
 Conduct a large number of tests with inadequate sample size. 

 Minimize experimental design constraints. 
 Publish the number of tests conducted that show "no significant 

result". 
 

Results of the controversy 
The controversy has produced several results. The American Psychological 

Association has strengthened its statistical reporting requirements after 
review, medical journal publishers have recognized the obligation to publish 

some results that are not statistically significant to combat publication bias 
and a journal has been created to publish such results exclusively. 

Textbooks have added some cautions and increased coverage of the tools 

necessary to estimate the size of the sample required to produce significant 
results. Major organizations have not abandoned use of significance tests 

although they have discussed doing so. 
 

Alternatives to significance testing 
The numerous criticisms of significance testing do not lead to a single 

alternative or even to a unified set of alternatives. A unifying position of 
critics is that statistics should not lead to a conclusion or a decision but to a 

probability or to an estimated value with confidence bounds. The Bayesian 
statistical philosophy is therefore congenial to critics who believe that an 

experiment should simply alter probabilities and that conclusions should only 
be reached on the basis of numerous experiments. 

 



One strong critic of significance testing suggested a list of reporting 

alternatives: effect sizes for importance, prediction intervals for confidence, 
replications and extensions for replicability, meta-analyses for generality. 

None of these suggested alternatives produces a conclusion/decision. 
Lehmann said that hypothesis testing theory can be presented in terms of 

conclusions/decisions, probabilities, or confidence intervals. "The distinction 
between the ... approaches is largely one of reporting and interpretation."  

 
On one "alternative" there is no disagreement: Fisher himself said, "In 

relation to the test of significance, we may say that a phenomenon is 
experimentally demonstrable when we know how to conduct an experiment 

which will rarely fail to give us a statistically significant result." Cohen, an 
influential critic of significance testing, concurred, "...don't look for a magic 

alternative to NHST... It doesn't exist." "...given the problems of statistical 
induction, we must finally rely, as have the older sciences, on replication." 

The "alternative" to significance testing is repeated testing. The easiest way 

to decrease statistical uncertainty is by more data, whether by increased 
sample size or by repeated tests. Nickerson claimed to have never seen the 

publication of a literally replicated experiment in psychology. 
  

While Bayesian inference is a possible alternative to significance testing, it 
requires information that is seldom available in the cases where significance 

testing is most heavily used. 
 

Future of the controversy 
It is unlikely that this controversy will be resolved in the near future. The 

flaws and unpopularity of significance testing do not eliminate the need for 
an objective and transparent means of reaching conclusions regarding 

experiments that produce statistical results. Critics have not unified around 
an alternative. Other forms of reporting confidence or uncertainty will 

probably grow in popularity. 

 
Improvements 

Jones and Tukey suggested a modest improvement in the original null-
hypothesis formulation to formalize handling of one-tail tests. They conclude 

that, in the "Lady Tasting Tea" example, Fisher ignored the 8-failure case 
(equally improbable as the 8-success case) in the example test involving 

tea, which altered the claimed significance by a factor of 2 
 

9.15 Hypothesis Testing For A Population Mean Or Proportion 

Step 1: Set up the null Hypothesis and alternative hypothesis based on the 

context of the problem 
Step 2: Set up the rejection region based on 

http://en.wikipedia.org/wiki/Bayesian_inference


1. the alternative hypothesis 

2. given level 
3. sample size n. 

 
 

 

 Review Questions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit 10 

Measures of Relationship  
10.1 Correlation Analysis 

Correlation  

When the value of one variable is related to the value of another, they are 

said to be correlated.  There are three  types of correlation:  
(i) perfectly correlated 

(ii)  (ii) partially correlated 
(iii) (iii) uncorrelated  

 
Coefficient of Correlation (r) measures such a relationship, and it is given by 

 
 
Note: 

 The value of r ranges from -1 (perfectly correlated in the negative 
direction) to +1 (perfectly correlated in the positive direction)  

 When r = 0, the two variables are not correlated  
 

10.2 Coefficient of Determination  

This calculates the proportion of the variation in the actual values which can 

be predicted by changes in the values of the independent variable.  It is 

denoted by and the square of the coefficient of correlation  is given by: 

 
Note: 

 ranges from 0 to 1 (r ranges from -1 to +1)  

 expressed as a percentage, it represents the proportion that can be 
predicted by the regression line  

 the value 1 - is therefore the proportion contributed by other factors  

 

Standard Error of Estimate (SEE)  

It is a measure of the variability of the regression line, i.e. the dispersion 
around the regression line.  It tells how much variation there is in the 

dependent variable between the raw value and the expected value in the 
regression : 

 



 
The  SEE allows us to generate the confidence interval on the regression 
line. 

 

 Expressing correlation 

 Calculation of Spearman correlation 

 Calculation of Pearson correlation 

 Interpretation of correlation coefficients 

 The coefficient of Determination (R2) 

 Regression and Prediction 

 Importance of linear Regression, scatter diagram 

 Simple Linear regression using the method of Ordinary Least 

Squares  

 Interpretation of results 

Unit 10:  Examples 

Unit 11: Examination sample questions 

 

 


