
INTRODUCTION TO DATABASES

Database

A database is an organised collection of information relating to the same topic or subject matter

OR a database is a collection of data as well as programs required to manage that data. The data

is stored in a database in a tabular format, across rows and columns in much the same way as in a

spread sheet.

Database management system (DBMS)

This is an application such as Ms Access, MYSQL, ORACLE etc that enables the user to collect

information on a computer, organise it in different ways, sort and select pieces of information of

interest to the user, store it on the computer, produce reports and manipulating the data in the

database such as adding new records, deleting records etc.

Object

An object is a structure in the database such as a table, query, form or macro.

Table

A table is a grouping of related data organised in fields (columns) and records (rows) on a

datasheet. By using a common field in two tables, the data can be combined/related. Many tables

can be stored in a single database.

Field

A field is a piece of information about a subject. This could be, for example the name field in a

table, which captures information about an employee, where the name is one out of various fields

holding information about employees.

Record

This is one complete set of fields relating to the same subject. This could be for example, all the

various bits of data (fields) captured about an employee, like name, age, sex, date of birth etc.

Attribute

An attribute is a named property or characteristic, which holds some information about an entity.

For example, a ‘customer’ has attributes such as a code, a name, and address.

Design view provides the tools for creating fields in a table. The design view customizes the fields

in the database so that data can be entered.

Datasheet view allows you to update, edit and delete information from a table.

The datasheet allows you to enter data into the database.

Primary Key

This is a key that is used to uniquely identify each of the records in a database table. This key

cannot have duplicate values in any two records; if it does, it will cause a conflict. A key is turned

into the primary key by right-clicking the grey square to the left of said field or by choosing

primary key command from the edit menu. This will bring up a menu, from this menu, select

“primary key” and your key is set. The same procedures may be followed to reverse a primary

key.

If none of the existing fields in the table will produce unique values of every record, a separate

field must be added. Access will prompt you to create this type of field at the beginning of the

table the first time you save the table and a primary key field has not been selected. The field is

named “ID” and the data type is “auto number”. The auto number type automatically updates

whenever a record is added.

Foreign Key

This is a field in a table that refers to a “primary key” field in another table. Consider the example

of the relationships between the ‘customer’ and ‘order master’ tables illustrated below.

Figure showing primary key – Foreign key relationships

 ORDER MASTER

 Order Date

 OrderNo.

 C Code

The ‘C Code’ field in the ‘customer’ table is a ‘primary key’ while the ‘C Code’ field in the ‘order

master’ table is not. When we set a relationship between these two fields, the ‘C Code field in the

‘Order Master’ table is said to be a ‘Foreign key’. This field in the ‘Order Master’ table can only

have values that already exist in the ‘CCode’ field of the ‘customer’ table. A ‘Foreign key’ can

therefore be defined as a copy of a primary key in another table.

Relationship

This is a link that is created and maintained between two tables that enable data to be accessed

from both the tables simultaneously.

RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS)

In a relational database, all data is stored and accessed via relations. Relations that store data are

called "base relations", and in implementations are called "tables". Other relations do not store

data, but are computed by applying relational operations to other relations. These relations are

sometimes called "derived relations". In implementations these are called "views" or "queries".

Derived relations are convenient in that though they may grab information from several relations,

they act as a single relation. Also, derived relations can be used as an abstraction layer.

Strictly, a relational database is a collection of relations (frequently called tables). Other items are

frequently considered part of the database, as they help to organize and structure the data, in

addition to forcing the database to conform to a set of requirements.

The term relational database was originally defined and coined by Edgar Codd at IBM Almaden

Research Center in 1970.

CUSTOMER

CCode

C Name

C Address

CPhone

∞

An RDBMS is software that is used for creating, manipulating and maintaining a database.

‘Maintaining’ involves several tasks that an RDBMS takes care of. These tasks are listed below:

PURPOSE OF RDBMS

1. Control of Data Redundancy.

Since data in an RDBMS is spread across several tables, repetition or redundancy of data is

reduced. Redundant data can be extracted and placed in another table, along with a field that is

common to both tables. Data can then be extracted from the two tables using the common field.

2. Data Abstraction.

RDBMS hides the actual way in which data is stored, while providing the user with a conceptual

representation of the data.

3. Support for Multiple Users.

It allows effective sharing of data. That is, it ensures that several users can concurrently access

the data in the database without affecting the speed of data access.

4. Multiple Ways of Interfacing to the System

This would require the database to be accessible through different query languages as well as

programming languages. It would also mean that a variety of front-end tools should be able to use

the database as a back-end. For example, data stored in Access can be displayed and manipulated

using forms created in software such as visual Basic or Front page 2000.

5. Restricting Unauthorised Access.

An RDBMS provides a ‘security’ mechanism that ensures that data in the database is protected

from unauthorised access and malicious use. The security that is implemented in most RDBMSs

is referred to as ‘User-level Security’, where in the various users of the database are assigned user

names and passwords. Only when the user enters the correct user name and password is able to

access the data in the database.

6. Enforcing Integrity Constraints.

RDBMSs provide a set of rules that ensure that data entered into a table is valid. These rules must

remain true for a database to preserve integrity. Integrity ‘constraints’ are specified at the time of

creating the database, and are enforced by the RDBMS. For example in a ‘Marks’ table, a

constraint can be added to ensure that the marks in each subject must be between 0 and 100. This

is called a check constraint.

7. Backup and Recovery

In spite of ensuring that the database is secure from unauthorised access as well as invalid entries,

there is always a danger that the data in the database could get lost. This could happen due to some

hardware problem or system crash. It could therefore result in a loss of all the data. To guard the

database from this, most RDBMSs have in built backup and recovery techniques that ensure that

the database is protected from these kinds of fatalities too.

Summarized guide lines for designing a database

1. Identify the data scope .i.e define boundaries. Determine the data that will be stored and

data that won’t be stored in the database. This will determine the data scope and database

scope. After this, the name of the database should be defined. i.e it should relate to the data

that is to be stored.

2. The designer should identify the different entities within the scope above. An entity

could be an object whose data is to be stored in the database. The entities must be distinct.

3. Define fields of each identified entity. Each entity forms a table in the database. Entity

fields [attributes] are a set of discrete information required to be stored about an entity.

Define field sizes and data types by using an appropriate data definition language. if

necessary give some description about the fields.

4. Define primary and foreign keys for each table and try to normalize each table.

Normalization is the process of reducing redundant data (fields) from the database. by use

of primary and foreign keys, we determine the necessary table relationships, define data

types for each and different data constraints.

5. Design the necessary data entry Forms, Reports and queries to information needs of

an organization. Enforce data security policies.

6. Implement the design by using a suitable DBMS

7. Testing and commissioning: the database should be tested for errors and rectified if any

and put it into use.

8. Maintenance; this is done through database administration for troubleshooting any

problems, user training, design queries, replacement of faulty devices etc.

DATABASE DESIGN BASICS

A properly designed database provides you with access to up-to-date, accurate information.

Because a correct design is essential to achieving your goals in working with a database, investing

the time required to learn the principles of good design makes sense. In the end, you are much

more likely to end up with a database that meets your needs and can easily accommodate change.

This article provides guidelines for planning a database. You will learn how to decide what

information you need, how to divide that information into the appropriate tables and columns, and

how those tables relate to each other. You should read this article before you create your first

database.

SOME POINTS TO PUT IN MIND BEFORE STARTING TO DESIGN A DATABASE

What is good database design?

The design process

Determining the purpose of your database

Finding and organizing the required information

Dividing the information into tables

Turning information items into columns

Specifying primary keys

Creating the table relationships

Refining the design

Applying the normalization rules

Microsoft Office Access 2007 organizes your information into tables: lists of rows and columns

reminiscent of an accountant’s pad or a Microsoft Office Excel 2007 worksheet. In a simple

database, you might have only one table. For most databases you will need more than one. For

example, you might have a table that stores information about products, another table that stores

information about orders, and another table with information about customers.

ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Terms
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Good
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Good
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#DesignProcess
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Purpose
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#FindAndOrganize
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Tables
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Columns
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#SpecifyPrimaryKeys
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#TableRelationships
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#RefineDesign
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Normalization
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Good
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#DesignProcess
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Purpose
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#FindAndOrganize
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Tables
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Columns
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#SpecifyPrimaryKeys
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#TableRelationships
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#RefineDesign
ms-help://MS.MSACCESS.12.1033/MSACCESS/content/HA01224247.htm#Normalization

Each row is also called a record, and each column, is also called a field. A record is a meaningful

and consistent way to combine information about something. A field is a single item of

information — an item type that appears in every record. In the Products table, for instance, each

row or record would hold information about one product. Each column or field holds some type

of information about that product, such as its name or price.

What is a good database design?

Certain principles guide the database design process. The first principle is that duplicate

information (also called redundant data) is bad, because it wastes space and increases the

likelihood of errors and inconsistencies. The second principle is that the correctness and

completeness of information is important. If your database contains incorrect information, any

reports that pull information from the database will also contain incorrect information. As a result,

any decisions you make that are based on those reports will then be misinformed.

A good database design is, therefore, one that:

 Divides your information into subject-based tables to reduce redundant data.

 Provides Access with the information it requires to join the information in the tables

together as needed.

 Helps support and ensure the accuracy and integrity of your information.

 Accommodates your data processing and reporting needs.

THE DESIGN PROCESS

The design process consists of the following steps:

 Determine the purpose of your database

This helps prepare you for the remaining steps.

 Find and organize the information required

Gather all of the types of information you might want to record in the database, such as

product name and order number.

 Divide the information into tables

Divide your information items into major entities or subjects, such as Products or Orders.

Each subject then becomes a table.

 Turn information items into columns

Decide what information you want to store in each table. Each item becomes a field, and

is displayed as a column in the table. For example, an Employees table might include

fields such as Last Name and Hire Date.

 Specify primary keys

Choose each table’s primary key. The primary key is a column that is used to uniquely

identify each row. An example might be Product ID or Order ID.

 Set up the table relationships

Look at each table and decide how the data in one table is related to the data in other

tables. Add fields to tables or create new tables to clarify the relationships, as necessary.

 Refine your design

Analyze your design for errors. Create the tables and add a few records of sample data.

See if you can get the results you want from your tables. Make adjustments to the design,

as needed.

 Apply the normalization rules

Apply the data normalization rules to see if your tables are structured correctly. Make

adjustments to the tables, as needed.

Determining the purpose of your database

It is a good idea to write down the purpose of the database on paper — its purpose, how you expect

to use it, and who will use it. For a small database for a home based business, for example, you

might write something simple like "The customer database keeps a list of customer information

for the purpose of producing mailings and reports." If the database is more complex or is used by

many people, as often occurs in a corporate setting, the purpose could easily be a paragraph or

more and should include when and how each person will use the database. The idea is to have a

well developed mission statement that can be referred to throughout the design process. Having

such a statement helps you focus on your goals when you make decisions.

Finding and organizing the required information

To find and organize the information required, start with your existing information. For example,

you might record purchase orders in a ledger or keep customer information on paper forms in a

file cabinet. Gather those documents and list each type of information shown (for example, each

box that you fill in on a form). If you don't have any existing forms, imagine instead that you have

to design a form to record the customer information. What information would you put on the form?

What fill-in boxes would you create? Identify and list each of these items. For example, suppose

you currently keep the customer list on index cards. Examining these cards might show that each

card holds a customer’s name, address, city, state, postal code and telephone number. Each of these

items represents a potential column in a table.

As you prepare this list, don’t worry about getting it perfect at first. Instead, list each item that

comes to mind. If someone else will be using the database, ask for their ideas, too. You can fine-

tune the list later.

Next, consider the types of reports or mailings you might want to produce from the database. For

instance, you might want a product sales report to show sales by region, or an inventory summary

report that shows product inventory levels. You might also want to generate form letters to send

to customers that announces a sale event or offers a premium. Design the report in your mind, and

imagine what it would look like. What information would you place on the report? List each item.

Do the same for the form letter and for any other report you anticipate creating.

Giving thought to the reports and mailings you might want to create helps you identify items you

will need in your database. For example, suppose you give customers the opportunity to opt in to

(or out of) periodic e-mail updates, and you want to print a listing of those who have opted in. To

record that information, you add a “Send e-mail” column to the customer table. For each customer,

you can set the field to Yes or No.

The requirement to send e-mail messages to customers suggests another item to record. Once you

know that a customer wants to receive e-mail messages, you will also need to know the e-mail

address to which to send them. Therefore you need to record an e-mail address for each customer.

It makes good sense to construct a prototype of each report or output listing and consider what

items you will need to produce the report. For instance, when you examine a form letter, a few

things might come to mind. If you want to include a proper salutation — for example, the "Mr.",

"Mrs." or "Ms." string that starts a greeting, you will have to create a salutation item. Also, you

might typically start a letter with “Dear Mr. Smith”, rather than “Dear. Mr. Sylvester Smith”. This

suggests you would typically want to store the last name separate from the first name.

A key point to remember is that you should break each piece of information into its smallest useful

parts. In the case of a name, to make the last name readily available, you will break the name into

two parts — First Name and Last Name. To sort a report by last name, for example, it helps to

have the customer's last name stored separately. In general, if you want to sort, search, calculate,

or report based on an item of information, you should put that item in its own field.

Think about the questions you might want the database to answer. For instance, how many sales

of your featured product did you close last month? Where do your best customers live? Who is the

supplier for your best-selling product? Anticipating these questions helps you zero in on additional

items to record.

After gathering this information, you are ready for the next step.

Dividing the information into tables

To divide the information into tables, choose the major entities, or subjects. For example, after

finding and organizing information for a product sales database, the preliminary list might look

like this:

The major entities shown here are the products, the suppliers, the customers, and the orders.

Therefore, it makes sense to start out with these four tables: one for facts about products, one for

facts about suppliers, one for facts about customers, and one for facts about orders. Although this

doesn’t complete the list, it is a good starting point. You can continue to refine this list until you

have a design that works well.

When you first review the preliminary list of items, you might be tempted to place them all in a

single table, instead of the four shown in the preceding illustration. You will learn here why that

is a bad idea. Consider for a moment, the table shown here:

In this case, each row contains information about both the product and its supplier. Because you

can have many products from the same supplier, the supplier name and address information has to

be repeated many times. This wastes disk space. Recording the supplier information only once in

a separate Suppliers table, and then linking that table to the Products table, is a much better

solution.

A second problem with this design comes about when you need to modify information about the

supplier. For example, suppose you need to change a supplier's address. Because it appears in

many places, you might accidentally change the address in one place but forget to change it in the

others. Recording the supplier’s address in only one place solves the problem.

When you design your database, always try to record each fact just once. If you find yourself

repeating the same information in more than one place, such as the address for a particular supplier,

place that information in a separate table.

Finally, suppose there is only one product supplied by Coho Winery, and you want to delete the

product, but retain the supplier name and address information. How would you delete the product

record without also losing the supplier information? You can't. Because each record contains facts

about a product, as well as facts about a supplier, you cannot delete one without deleting the other.

To keep these facts separate, you must split the one table into two: one table for product

information, and another table for supplier information. Deleting a product record should delete

only the facts about the product, not the facts about the supplier.

Once you have chosen the subject that is represented by a table, columns in that table should store

facts only about the subject. For instance, the product table should store facts only about products.

Because the supplier address is a fact about the supplier, and not a fact about the product, it belongs

in the supplier table.

Turning information items into columns

To determine the columns in a table, decide what information you need to track about the subject

recorded in the table. For example, for the Customers table, Name, Address, City-State-Zip, Send

e-mail, Salutation and E-mail address comprise a good starting list of columns. Each record in the

table contains the same set of columns, so you can store Name, Address, City-State-Zip, Send e-

mail, Salutation and E-mail address information for each record. For example, the address column

contains customers’ addresses. Each record contains data about one customer, and the address field

contains the address for that customer.

Once you have determined the initial set of columns for each table, you can further refine the

columns. For example, it makes sense to store the customer name as two separate columns: first

name and last name, so that you can sort, search, and index on just those columns. Similarly, the

address actually consists of five separate components, address, city, state, postal code, and

country/region, and it also makes sense to store them in separate columns. If you want to perform

a search, filter or sort operation by state, for example, you need the state information stored in a

separate column.

You should also consider whether the database will hold information that is of domestic origin

only, or international, as well. For instance, if you plan to store international addresses, it is better

to have a Region column instead of State, because such a column can accommodate both domestic

states and the regions of other countries/regions. Similarly, Postal Code makes more sense than

Zip Code if you are going to store international addresses.

The following list shows a few tips for determining your columns.

 Don’t include calculated data

In most cases, you should not store the result of calculations in tables. Instead, you can

have Access perform the calculations when you want to see the result. For example,

suppose there is a Products On Order report that displays the subtotal of units on order for

each category of product in the database. However, there is no Units On Order subtotal

column in any table. Instead, the Products table includes a Units On Order column that

stores the units on order for each product. Using that data, Access calculates the subtotal

each time you print the report. The subtotal itself should not be stored in a table.

 Store information in its smallest logical parts

You may be tempted to have a single field for full names, or for product names along with

product descriptions. If you combine more than one kind of information in a field, it is

difficult to retrieve individual facts later. Try to break down information into logical parts;

for example, create separate fields for first and last name, or for product name, category,

and description.

Once you have refined the data columns in each table, you are ready to choose each table's primary

key.

Specifying primary keys

Each table should include a column or set of columns that uniquely identifies each row stored in

the table. This is often a unique identification number, such as an employee ID number or a serial

number. In database terminology, this information is called the primary key of the table. Access

uses primary key fields to quickly associate data from multiple tables and bring the data together

for you.

If you already have a unique identifier for a table, such as a product number that uniquely identifies

each product in your catalog, you can use that identifier as the table’s primary key — but only if

the values in this column will always be different for each record. You cannot have duplicate

values in a primary key. For example, don’t use people’s names as a primary key, because names

are not unique. You could easily have two people with the same name in the same table.

A primary key must always have a value. If a column's value can become unassigned or unknown

(a missing value) at some point, it can't be used as a component in a primary key.

You should always choose a primary key whose value will not change. In a database that uses

more than one table, a table’s primary key can be used as a reference in other tables. If the primary

key changes, the change must also be applied everywhere the key is referenced. Using a primary

key that will not change reduces the chance that the primary key might become out of sync with

other tables that reference it.

Often, an arbitrary unique number is used as the primary key. For example, you might assign each

order a unique order number. The order number's only purpose is to identify an order. Once

assigned, it never changes.

If you don’t have in mind a column or set of columns that might make a good primary key, consider

using a column that has the AutoNumber data type. When you use the AutoNumber data type,

Access automatically assigns a value for you. Such an identifier is factless; it contains no factual

information describing the row that it represents. Factless identifiers are ideal for use as a primary

key because they do not change. A primary key that contains facts about a row — a telephone

number or a customer name, for example — is more likely to change, because the factual

information itself might change.

A column set to the AutoNumber data type often makes a good primary key. No two product

IDs are the same.

In some cases, you may want to use two or more fields that, together, provide the primary key of

a table. For example, an Order Details table that stores line items for orders would use two columns

in its primary key: Order ID and Product ID. When a primary key employs more than one column,

it is also called a composite key.

For the product sales database, you can create an AutoNumber column for each of the tables to

serve as primary key: ProductID for the Products table, OrderID for the Orders table, CustomerID

for the Customers table, and SupplierID for the Suppliers table.

Creating the table relationships

Now that you have divided your information into tables, you need a way to bring the information

together again in meaningful ways. For example, the following form includes information from

several tables.

Information in this form comes from the Customers table...

...the Employees table...

...the Orders table...

...the Products table...

...and the Order Details table.

Access is a relational database management system. In a relational database, you divide your

information into separate, subject-based tables. You then use table relationships to bring the

information together as needed.

Creating a one-to-many relationship

Consider this example: the Suppliers and Products tables in the product orders database. A supplier

can supply any number of products. It follows that for any supplier represented in the Suppliers

table, there can be many products represented in the Products table. The relationship between the

Suppliers table and the Products table is, therefore, a one-to-many relationship.

To represent a one-to-many relationship in your database design, take the primary key on the "one"

side of the relationship and add it as an additional column or columns to the table on the "many"

side of the relationship. In this case, for example, you add the Supplier ID column from the

Suppliers table to the Products table. Access can then use the supplier ID number in the Products

table to locate the correct supplier for each product.

The Supplier ID column in the Products table is called a foreign key. A foreign key is another

table’s primary key. The Supplier ID column in the Products table is a foreign key because it is

also the primary key in the Suppliers table.

You provide the basis for joining related tables by establishing pairings of primary keys and

foreign keys. If you are not sure which tables should share a common column, identifying a one-

to-many relationship ensures that the two tables involved will, indeed, require a shared column.

Creating a many-to-many relationship

Consider the relationship between the Products table and Orders table.

A single order can include more than one product. On the other hand, a single product can appear

on many orders. Therefore, for each record in the Orders table, there can be many records in the

Products table. And for each record in the Products table, there can be many records in the Orders

table. This type of relationship is called a many-to-many relationship because for any product,

there can be many orders; and for any order, there can be many products. Note that to detect many-

to-many relationships between your tables, it is important that you consider both sides of the

relationship.

The subjects of the two tables — orders and products — have a many-to-many relationship. This

presents a problem. To understand the problem, imagine what would happen if you tried to create

the relationship between the two tables by adding the Product ID field to the Orders table. To have

more than one product per order, you need more than one record in the Orders table per order. You

would be repeating order information for each row that relates to a single order — resulting in an

inefficient design that could lead to inaccurate data. You run into the same problem if you put the

Order ID field in the Products table — you would have more than one record in the Products table

for each product. How do you solve this problem?

The answer is to create a third table, often called a junction table, that breaks down the many-to-

many relationship into two one-to-many relationships. You insert the primary key from each of

the two tables into the third table. As a result, the third table records each occurrence or instance

of the relationship.

Each record in the Order Details table represents one line item on an order. The Order Details

table’s primary key consists of two fields — the foreign keys from the Orders and the Products

tables. Using the Order ID field alone doesn’t work as the primary key for this table, because one

order can have many line items. The Order ID is repeated for each line item on an order, so the

field doesn’t contain unique values. Using the Product ID field alone doesn’t work either, because

one product can appear on many different orders. But together, the two fields always produce a

unique value for each record.

In the product sales database, the Orders table and the Products table are not related to each other

directly. Instead, they are related indirectly through the Order Details table. The many-to-many

relationship between orders and products is represented in the database by using two one-to-many

relationships:

 The Orders table and Order Details table have a one-to-many relationship. Each order can

have more than one line item, but each line item is connected to only one order.

 The Products table and Order Details table have a one-to-many relationship. Each product

can have many line items associated with it, but each line item refers to only one product.

From the Order Details table, you can determine all of the products on a particular order. You can

also determine all of the orders for a particular product.

After incorporating the Order Details table, the list of tables and fields might look something like

this:

Creating a one-to-one relationship

Another type of relationship is the one-to-one relationship. For instance, suppose you need to

record some special supplementary product information that you will need rarely or that only

applies to a few products. Because you don't need the information often, and because storing the

information in the Products table would result in empty space for every product to which it doesn’t

apply, you place it in a separate table. Like the Products table, you use the ProductID as the primary

key. The relationship between this supplemental table and the Product table is a one-to-one

relationship. For each record in the Product table, there exists a single matching record in the

supplemental table. When you do identify such a relationship, both tables must share a common

field.

When you detect the need for a one-to-one relationship in your database, consider whether you

can put the information from the two tables together in one table. If you don’t want to do that for

some reason, perhaps because it would result in a lot of empty space, the following list shows how

you would represent the relationship in your design:

 If the two tables have the same subject, you can probably set up the relationship by using

the same primary key in both tables.

 If the two tables have different subjects with different primary keys, choose one of the

tables (either one) and insert its primary key in the other table as a foreign key.

Determining the relationships between tables helps you ensure that you have the right tables and

columns. When a one-to-one or one-to-many relationship exists, the tables involved need to share

a common column or columns. When a many-to-many relationship exists, a third table is needed

to represent the relationship.

Refining the design

Once you have the tables, fields, and relationships you need, you should create and populate your

tables with sample data and try working with the information: creating queries, adding new

records, and so on. Doing this helps highlight potential problems — for example, you might need

to add a column that you forgot to insert during your design phase, or you may have a table that

you should split into two tables to remove duplication.

See if you can use the database to get the answers you want. Create rough drafts of your forms and

reports and see if they show the data you expect. Look for unnecessary duplication of data and,

when you find any, alter your design to eliminate it.

As you try out your initial database, you will probably discover room for improvement. Here are

a few things to check for:

 Did you forget any columns? If so, does the information belong in the existing tables? If

it is information about something else, you may need to create another table. Create a

column for every information item you need to track. If the information can’t be calculated

from other columns, it is likely that you will need a new column for it.

 Are any columns unnecessary because they can be calculated from existing fields? If an

information item can be calculated from other existing columns — a discounted price

calculated from the retail price, for example — it is usually better to do just that, and avoid

creating new column.

 Are you repeatedly entering duplicate information in one of your tables? If so, you

probably need to divide the table into two tables that have a one-to-many relationship.

 Do you have tables with many fields, a limited number of records, and many empty fields

in individual records? If so, think about redesigning the table so it has fewer fields and

more records.

 Has each information item been broken into its smallest useful parts? If you need to report,

sort, search, or calculate on an item of information, put that item in its own column.

 Does each column contain a fact about the table's subject? If a column does not contain

information about the table's subject, it belongs in a different table.

 Are all relationships between tables represented, either by common fields or by a third

table? One-to-one and one-to- many relationships require common columns. Many-to-

many relationships require a third table.

Refining the Products table

Suppose that each product in the product sales database falls under a general category, such as

beverages, condiments, or seafood. The Products table could include a field that shows the

category of each product.

Suppose that after examining and refining the design of the database, you decide to store a

description of the category along with its name. If you add a Category Description field to the

Products table, you have to repeat each category description for each product that falls under the

category — this is not a good solution.

A better solution is to make Categories a new subject for the database to track, with its own table

and its own primary key. You can then add the primary key from the Categories table to the

Products table as a foreign key.

The Categories and Products tables have a one-to-many relationship: a category can include more

than one product, but a product can belong to only one category.

When you review your table structures, be on the lookout for repeating groups. For example,

0consider a table containing the following columns:

 Product ID

 Name

 Product ID1

 Name1

 Product ID2

 Name2

 Product ID3

 Name3

Here, each product is a repeating group of columns that differs from the others only by adding a

number to the end of the column name. When you see columns numbered this way, you should

revisit your design.

Such a design has several flaws. For starters, it forces you to place an upper limit on the number

of products. As soon as you exceed that limit, you must add a new group of columns to the table

structure, which is a major administrative task.

Another problem is that those suppliers that have fewer than the maximum number of products

will waste some space, since the additional columns will be blank. The most serious flaw with

such a design is that it makes many tasks difficult to perform, such as sorting or indexing the table

by product ID or name.

Whenever you see repeating groups review the design closely with an eye on splitting the table in

two. In the above example it is better to use two tables, one for suppliers and one for products,

linked by supplier ID.

