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Introduction

• Predicate calculus
– provides a means to describe facts and relations in a 

problem domain mathematically

– Uses rules to infer new knowledge

• The inference rules define a space that is searched to • The inference rules define a space that is searched to 
find a problem solution

• State space search theory provides a visual approach 
for finding a solution to the space search problem
– Represent problem as a state graph

– Use graph theory to analyze the structure and complexity 
of the problem and search procedure
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Figure 3.1:The city of Königsberg.
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Is there a walk around the city that crosses each bridge exactly once?

Figure 3.2: Graph of the Königsberg bridge system.
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The graph preserves the structure of bridges, while ignoring
extraneous features such as bridge lengths, distances, etc. 



Bridges of Königsberg Problem

• Alternatively, the Königsberg bridge system can 
be represented using predicate calculus – each arc 
in the graph is represented by the connect
predicate:
– connect(i1, i2, b1)

– connect(rb1, i1, b2)

– connect(rb1, i1, b3)

– connect(rb1, i2, b4)

– connect(rb2, i1, b5)

– connect(rb2, i1, b6)

– connect(rb2, i2, b7)
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Bridges of Königsberg Problem

• However the structure of the problem can 
be visualized more directly in the graph 
representationrepresentation

• Euler noted that unless a graph contains 
either zero or two nodes of odd degree, the 
walk is impossible (the degree of a node is 
the number of arcs connecting the node)
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Graph Theory

• A graph is a set of nodes or states and a set of arcs 
that connect the nodes

• A labeled graph has one or more descriptors (labels) 
attached to each nodeattached to each node

• In a state space graph, the descriptors identify states 
in a problem-solving process

• The arcs may also be labeled

• Arc labels indicate named relationships or attach 
weights to arcs 
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Graph Theory

• A graph is directed if arcs have directions (Fig. 3.3)

• A path through a graph connects a sequence of 
nodes through successive arcs ([a, b, c, d] in Fig. 
3.3)3.3)

• A rooted graph has a unique node, root, such that 
there is a path from the root to all nodes within the 
graph (Fig. II.5)

• A tree is a graph in which two nodes have at most 
one path between them (Fig. 3.4)
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Figure 3.3: A labeled directed graph.
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Figure II.5: Portion of the state space for tic-tac-toe.
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Figure 3.4: A rooted tree, exemplifying family relationships.
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b is a parent of e and f
e and f are children of b and siblings of each other
a and c are ancestors of g, h and i
g, h and i are descendants of a and c
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The Finite State Machine (FSM)

• It is a finite, directed, connected graph

• It has a set of states, a set of input values, 
and a state transition function describing the and a state transition function describing the 
effect of input stream on the states of the 
graph

• It is primary used to recognize components 
of a formal language (often “words” made 
from characters of an “alphabet”) 
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Fig 3.5 (a) The finite state graph for a flip flop and
(b) its transition matrix.
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Fig 3.6 (a) The finite state graph and (b) the transition  
matrix for string (*abc*) recognition example
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The State Space Representation 
of Problems

• A state spacerepresentation of a problem is 
a directed graph where the nodes 
correspond to partial problem solution correspond to partial problem solution 
states, and the arcs correspond to steps in a 
problem solving process

• State space search characterizes problem 
solving as a process of finding a solution 
path from a start state to a goal state
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Tic-Tac-Toe Example

• The start state (S) is an empty board (Figure II.5)

• The goal description (GD) is a board state having 
three Xs in a row, column, or diagonal

• The path from the start state to a goal state gives the 
series of moves in a winning gameseries of moves in a winning game

• The states (N) of the space are all the different 
configurations of Xs and Os the game can have (39)

• Arcs (A) corresponds to legal moves of the game, 
alternating between placing an X and an O in an 
unused location

• Total number of paths = 9! 
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The 8-Puzzle Example

• 8 differently numbered tiles are fitted into 9 
spaces. One space is left blank so that tiles 
can be moved around to form different can be moved around to form different 
patterns

• The goal is to find a series of moves of tiles 
to place the board in a goal configuration

• Number of states of the space = 9!
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Fig 3.8 State space of the 8-puzzle generated by “move blank” operations
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The Traveling Salesperson 
Example

• A salesperson needs to visit five cities and 
then return home

• The goal of the problem is to find the 
shortest path for the salesperson to travel, 
visiting each city, and return to the starting 
city
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Fig 3.9 An instance of the travelling salesperson problem
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• The nodes of the graph represent the cities.
• The labels on the arcs represent the distances.
• Assume the salesperson lives in city A.

Fig 3.10 Search for the travelling salesperson problem. Each arc is marked with 
the total weight of all paths from the start node (A) to its endpoint.
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Total number of paths = (5 − 1)!

Fig 3.11:
An instance of the travelling salesperson problem with the nearest 
neighbor path in bold. Note this path (A, E, D, B, C, A), at a cost of 550, 
is not the shortest path. The comparatively high cost of arc (C, A) 
defeated the heuristic. (The rule is “go to the closest unvisited city”.)
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Strategies for State Space Search

• A state space may be searched in two 
directions
– From the given data of a problem toward a goal – From the given data of a problem toward a goal 

(data-driven search or forward chaining)

– From a goal back to the data (goal-driven
reasoning or backward chaining)
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Strategies for State Space Search

• Data-driven reasoning
– Takes the facts and applies the rules or legal 

moves to produce new factsmoves to produce new facts

– New facts are used by the rules to generate 
more new facts

– This process continues until it generates a path 
that leads to a goal condition
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Strategies for State Space Search

• Goal-driven reasoning
– Takes the goal, finds the rules that produce the 

goal and determines what conditions must be goal and determines what conditions must be 
true to use them

– The conditions become the new goal for search

– Search continues backward through successive 
rules and subgoals until it works back to the 
facts of the problem 
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Comparison of Search Strategies 

• Both data-driven and goal-driven problem 
solver search the same state space graph

• The order and actual number of states • The order and actual number of states 
searched can be different

• The preferred strategy is determined by the 
properties of the problem itself

• For example: 
– Prove “I am a descendent of Thomas Jefferson.” 
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Fig 3.12     State space in which goal-directed search effectively       
prunes extraneous search paths.
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Fig 3.13    State space in which data-directed search prunes 
irrelevant data and their consequents and determines 
one of a number of possible goals.
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Implementing Graph Search

• The problem solver must find a path from a start 
state to a goal state through the state space graph

• The sequence of arcs in this path correspond to the 
ordered steps of the solutionordered steps of the solution

• Backtracking is a technique for systematically 
trying all paths through a state space
– Begins at a start state and pursues a path until it  

reaches either a goal or a “dead end”

– If it reaches a dead end, it backtracks to the most recent 
node on the path with unexamined siblings and 
continues searching
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Fig 3.14   Backtracking search of a hypothetical state space.
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Depth-First and Breath-First 
Search

• Data-driven and goal-driven specifies the search 
direction; depth-first and breath-first determines 
the search order

• Depth-first search examines the children and  the • Depth-first search examines the children and  the 
descendants of a state before examining the 
siblings; it goes deeper whenever possible

• Breath-first search explores the space in a level-
by-level fashion. It moves to the next level only 
when no more states can be explored 
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Fig 3.15    Graph for breadth - and depth - first search examples
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Depth-first: A, B, E, K, S, L, T, F, M, C, G, N, H, O, P, U, 
D, I, Q, J, R

Breath-first: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, 
Q, R, S, T, U

Fig 3.17    Breadth-first search of the 8-puzzle, showing order in 
which states were searched.
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Fig 3.19    Depth-first search of the 8-puzzle with a depth bound of 5.

36



Depth-First and Breath-First 
Search

• Breath-first search
– Because it always examines all nodes at level n before 

proceeding to level n+1, it always finds the shortest 
path to a goal nodepath to a goal node

– All unexpanded nodes for each level of search must be 
kept in memory

– If states have a high average number of children, the 
combinatorial explosion of states may prevent the 
algorithm from finding a solution using available 
memory
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Depth-First and Breath-First 
Search

• Depth-first search
– If the solution path is long, it will not waste time 

searching a large number of “shallow” states in the graph

– Can get “lost” deep in a graph, missing shorter paths to a – Can get “lost” deep in a graph, missing shorter paths to a 
goal or even becoming stuck in an infinitely long path 
that does not lead to a goal

– Much more efficient use of search spaces because it does 
not need to keep all the nodes at a given level on the 
memory (it retains only the children of a single state)
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Depth-First Search with Iterative 
Deepening

• A nice compromise on the trade-offs of the depth-
first and breadth-first search

• Performs a depth-first search of the space with 
depth bound of 1depth bound of 1

• If it fails to find a goal, it performs another depth 
search with a depth bound of 2

• This continues until a goal is found

• It is guaranteed to find a shortest path to a goal

• It uses less memory space for storing the states
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State Space Description of a 
Logic System

• Symbols and predicates in propositional and 
predicate calculus can be represented using 
the nodes of a state space graphthe nodes of a state space graph

• Inference rules can be described by the arcs 
between states

• Problems in the predicate calculus may be 
solved by searching the state space
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Fig 3.20    State space graph of a set of implications in the 
propositional calculus.

q → p
r → p
v → q
s → r
t → r

goal nodes

41

t → r
s → u
s
t

start nodes

Determining if a proposition is true requires the finding
of a path from a start node to the proposition 

And/Or Graph

• In previous example all assertions were in 
the form of  q → p 

• And/Orgraph is an extension to the basic • And/Orgraph is an extension to the basic 
graph (see Graph Theory in the beginning)

• It allows logic operators or and and to be 
represented in the graph 
– and node: q ∧ r 

– or node: q ∨ r 
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Fig 3.21   And/or graph of the expression q Λ r → p              
Both q and r must be true for p to be true. 
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Fig 3.22    And/or graph of the expression q v r → p 
The truth of either q or r is sufficient to prove p is true.

And/Or Graph Search Example

a
b
c
a ∧ b → d
a ∧ c → e
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a ∧ c → e
b ∧ d → f
f → g
a ∧ e → h

1. Is h true?
2. Is h true if b is no longer true?
3. What is the shortest path to show h is true?



Fred and Sam Example
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• Goal expression:  ∃∃∃∃X location(fred, X),  or “where is Fred?”

• Assume the problem solver tries rules in order

• The solution subgraph shows that Fred is at the museum.
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The Financial Advisor Revisited

• Assume:
– # of dependents = 2

– Amount of saving = $20,000

– A steady income of $30,000 – A steady income of $30,000 

– minsavings(X) ≡ 5000 × X

– minincome(X) ≡ 15000 + (4000× X)

• Two ways to obtain the above facts:
– Add facts as predicates to the database

– Run the program first and let the program ask the user 
to enter the facts as needed
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An English Language Parser and 
Sentence Generator

• A set of rewrite rules for parsing sentences in a 
subset of English grammar

• Used to determine if a sequence of words is a • Used to determine if a sequence of words is a 
well-formed sentence (or grammatically correct)

• An expression is well formed in a grammar if it 
consists of entirely of terminal symbols (words 
from a dictionary) and can be reduced to the 
sentence symbol through a series of 
substitutions using the rewrite rules
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Five rules for a simple subset of English grammar and some terminals:
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Fig 3.27 And/or graph for the grammar of Example 3.3.6. Some of the 
nodes (np, art, etc) have been written more than once to simplify 
drawing the graph.
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Fig 3.28 Parse tree for the sentence “The dog bites the man.” Note this is a 
subtree of the graph of fig 3.27.
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