Structures and Strategies
For Space State Search

George F Luger
ARTIFICIAL INTELLIGENCE 6th edition

Structures and Strategies for Complex Problem 8glvi

Introduction

* Predicate calculus

— provides a means to describe facts and relations in a
problem domain mathematically

— Uses rules to infer new knowledge

» The inference rules define a space that is seator
find a problem solution

» State space search theory provides a visual agiproa
for finding a solution to the space search problem
— Represent problem as a state graph

— Use graph theory to analyze the structure and complexity

of the problem and search procedure
2

Figure 3.1: The city of Kdnigsberg.

Riverbank 1

Riverbank 2

Is there a walk around the city that crosses each bridge exactly o

3

Figure 3.2: Graph of the Konigsberg bridge system.

rbi

rb2

The graph preserves the structure of bridges, while ignoring
extraneous features such as bridge lengths, distances, etc. .

Bridges of Kdnigsberg Problem

» Alternatively, the Kénigsberg bridge system can

be represented using predicate calculus — each arc
in the graph is represented by ttemnect

predicate:

— connect(il, i2, b1)
— connect(rb1, i1, b2
— connect(rb1, i1, b3
— connect(rb1, i2, b4
— connect(rb2, i1, b5
— connect(rb2, i1, b6

)
)
)
)
)
— connect(rb2,i2, b7)

Bridges of Kdnigsberg Problem

 However the structure of the problem can
be visualized more directly in the graph
representatic

» Euler noted that unless a graph contains
either zero or two nodes of odd degree, the
walk is impossible (the degree of a node is
the number of arcs connecting the node)

Graph Theory

A graph is a set of nodes or states and a setsf a
that connect the nodes

A labeled graph has one or more descriptors #abel
attached to each nc

In a state space graph, the descriptors idertaies
in a problem-solving process

The arcs may also be labeled

Arc labels indicate named relationships or attach
weights to arcs

Graph Theory

A graph is directed if arcs have directions (RB@)

A path through a graph connects a sequence of
nodes through successive ars {, c, d] in Fig.
3.3)

A rooted graph has a unique node, root, such that
there is a path from the root to all nodes withia t
graph (Fig. I1.5)

A tree is a graph in which two nodes have at most
one path between them (Fig. 3.4)

Figure 3.3: A labeled directed graph.

a (J‘g\
b.‘_/ ¢
Nodes = {a,b,c,d,e}
Arcs = {(a,b),(a,d),(b,c).(c,b),(c,d),(d,a),(d,e),(e.,c)(e,d)}

Figure 11.5: Portion of the state space for tic-tac-toe.

.\ \QA -
b e
e

S

4

——

T
e T
[
X] X [i]
0 0
LS e, =

5 % 7

— %// /
7))

9 10
DEFINITION
GRAPH
Figure 3.4: Arooted tree, exemplifying family relationships. A graph consists of:
I
A set of nodes Ny, Np. Na, N,. which need not be finite.
a A set of arcs that connect pairs of nodes.
Arcs are ordered pairs of nodes; i.e., the arc (Ng, N,) connects node Ny to node
N, This indicates a direct connection from node Nj to Ny but not from N, to N,
unless (N4, Na) is also an arc, and then the arc joining Ny and Ny is undirected.
If a directed arc connects N; and N, then N, is called the parent of N, and N, the
b d child of N;. If the graph also contains an arc (N;, Ny}, then Ny and N, are called
c siblings.
A rooted graph has a unique node Ng from which all paths in the graph originate.
That is, the root has no parent in the graph.
A tip or leaf node is a node that has no children.
o ® o ® ? .. An ordered sequence of nodes [Ny, Np, Ng, ..., N, where each pair N; , N, in the
e f g h | j sequence represents an arc, i.e., (N, Ny}, is called a path of length n— 1.
On a path in a rooted graph. a node is said to be an ancestor of all nodes
positioned after it (to its right) as well as a descendant of all nodes before it.
b |S a pare nt Oé andf A path that contains any node more than once (some N; in the definition of path
. T above is repeated) is said to contain a cyele or loap.
e andf are children ob and siblings of each other . - o ,
. A tree is a graph in which there is a unique path between every pair of nodes.
a andc are ancestors (y’ h and| (The paths in a tree, therefore, contain no cycles.)
. The edges in a rooted tree are directed away from the root. Each node in a rooted
g, h andi are descendants afandc tree has a unique parent.
11 12

Two nodes are said to be connected if a path exists that includes them both.

The Finite State Machine (FSM)

* Itis a finite, directed, connected graph

* It has a set of states, a set of input values,
and a state transition function describing
effect of input stream on the states of the
graph

* Itis primary used to recognize components
of a formal language (often “words” made
from characters of an “alphabet”)

13

DEFINITION
FINITE STATE MACHINE (FSM)
A finite state machine is an ordered triple (S, I, F), where:
S is a finite set of states in a connected graph sy, s;, Sa, ..., Sn.
| is a finite set of input values iy, iz, i3, ..., in-

F is a state transition function that for any i € |, describes its effect on the
states S of the machine, thus Vie |, F: (S — S). If the machine is in state
s;and input i occurs, the next state of the machine will be F; (s;).

0

= 0 0 1

() 1 5 s.| s, s

| Y) of So S

& 1 7\% s, |'s, S,
(a) (b)

Fig 3.5 (a) The finite state graph for a flip flop and

(b) its transition matrix. u

DEFINITION
FINITE STATE ACCEPTOR (MOORE MACHINE)
A finite state acceptor is a finite state machine (S, |, F), where:
d s, € S such that the input stream starts at s;, and

d's, € S, an accept state. The input stream is accepted if it terminates in
that state. In fact, there may be a set of accept states.

The finite state acceptor is represented as (S, s;, {s,}, |, F)

a c.d ‘a b ¢ d
K“\/—ﬂ"g“‘f; _b"->_----L - 358 S S &
; N N
S Y ® S8 & &% S
peg NS4 A S: S8 & S &
’ Bbd @s: s s s
(a) (b)

Fig 3.6 (a) The finite state graph and (b) the transition

matrix for string (*abc*) recognition example
15

The State Space Representation
of Problems

» A state spaceaepresentation of a problem is
a directed graph where the nodes
correspond to partial problem soluti
states, and the arcs correspond to stepsin a
problem solving process

» State space search characterizes problem
solving as a process of finding a solution
path from a start state to a goal state

16

DEFINITION
STATE SPACE SEARCH
A state space is represented by a four-tuple [N,A,S,GD], where:

N is the set of nodes or states of the graph. These correspond to the states in a
problem-solving process.

A is the set of arcs (or links) between nodes. These correspond to the steps in a
problem-solving process.

S. a nonempty subset of N, contains the start state(s) of the problem.

GD, a nonempty subset of N, contains the goal state(s) of the problem. The states
in GD are described using either:

I. A measurable property of the states encountered in the search.
2. A property of the path developed in the search, for example, the
transition costs for the arcs of the path.

A solution path is a path through this graph from a node in S to a node in GD.

17

Tic-Tac-Toe Example

The start states] is an empty board (Figure 11.5)

The goal descriptiongD) is a board state having
three Xs in a row, column, or diagonal

The path from the start state to a goal statesgive
series of moves in a winning ga

The statesN) of the space are all the different
configurations of Xs and Os the game can hafe (3

Arcs (A) corresponds to legal moves of the game,
alternating between placing an X and an O in an
unused location

Total number of paths = 9!

18

The 8-Puzzle Example

8 differently numbered tiles are fitted into 9
spaces. One space is left blank so that tiles
can be moved around to form differt
patterns

» The goal is to find a series of moves of tiles
to place the board in a goal configuration

 Number of states of the space = 9!

19

Fig 3.8 State space of the 8-puzzle generated lmyémblank” operations

- o | =

20

The Traveling Salesperson
Example

» A salesperson needs to visit five cities and
then return home

» The goal of the problem is to find the
shortest path for the salesperson to travel,
visiting each city, and return to the starting
city

21

Fig 3.9 An instance of the travelling salesperson problem

» The nodes of the graph represent the cities.
» The labels on the arcs represent the distances.

* Assume the salesperson lives in city A.
22

Fig 3.10 Search for the travelling salesperson grobEach arc is marked with
the total weight of all paths from the start noAgtp its endpoint.

Path: Path: Path:

ABCDEA ABCEDA ABDCEA

Cost: Cost: Cost:

375 425 475 Total number of paths = (5 - 1)!

23

Fig 3.11:

An instance of the travelling salesperson problem with the nearest
neighbor path in bold. Note this path (A, E, D, B, C, A), at a@bS50,
is not the shortest path. The comparatively high cost of arc (C, A)
defeated the heuristicTlje rule is “go to the closest unvisited city’).

24

Strategies for State Space Searct

» A state space may be searched in two
directions

— From the given data of a problem toward a ¢
(data-driven search or forward chaining)

— From a goal back to the datgoél-driven
reasoning or backward chaining)

25

Strategies for State Space Searct

» Data-driven reasoning

— Takes the facts and applies the rules or legal
moves to produce new fa

— New facts are used by the rules to generate
more new facts

— This process continues until it generates a path
that leads to a goal condition

26

Strategies for State Space Searct

» Goal-driven reasoning

— Takes the goal, finds the rules that produce the
goal and determines what conditions mus
true to use them

— The conditions become the new goal for search

— Search continues backward through successive
rules and subgoals until it works back to the
facts of the problem

27

Comparison of Search Strategies

» Both data-driven and goal-driven problem
solver search the same state space graph

* The order and actual number of ste¢
searched can be different

* The preferred strategy is determined by the
properties of the problem itself

* For example:
— Prove “| am a descendent of Thomas Jefferson.”

28

Fig 3.12 State space in which goal-directed search effectively

prunes extraneous search paths.

Direction of Goal
reasoning

29

Fig 3.13 State space in which data-directed search prunes
irrelevant data and their consequents and determines
one of a number of possible goals.

Goal

Direction of
reasoning

30

Implementing Graph Search

» The problem solver must find a path from a start
state to a goal state through the state space graph

» The sequence of arcs in this path correspondeto th
ordered steps of the solut

» Backtracking is a technique for systematically
trying all paths through a state space

— Begins at a start state and pursues a path until it
reaches either a goal or a “dead end”

— If it reaches a dead end, it backtracks to the most recent
node on the path with unexamined siblings and

continues searching
31

Fig 3.14 Backtracking search of a hypotheticailestpace.

32

Depth-First and Breath-First
Search

« Data-driven and goal-driven specifies the search
direction;depth-first andbreath-first determines
the search order

» Deptl-first search examines the children and
descendants of a state before examining the
siblings; it goes deeper whenever possible

» Breath-first search explores the space in a level-
by-level fashion. It moves to the next level only
when no more states can be explored

33

Fig 3.15 Graph for breadth - and depth - first search examples

A NN
LI/M\. IRNAVANN

|

S

Depth-first: A,B,E,K,S,L,T,F,M,C,G,N,H, O, P, U,
D,I,Q,J,R

Breath-first: A,B,C,D,E,F, G H,I,J, K, L,M,N, O, P,
QR,STU

34

Fig 3.17 Breadth-first search of the 8-puzzle, showing order i
which states were searched.

2]ala][z]s
145 [l s
7[5

29 30

ala|[1[2]a
1]4]e
EH

34 35 36 37 38 39 40 41 42 43 44 45 46

BED

Goal 35

Fig 3.19 Depth-first search of the 8-puzzle with a depth bound «

- o
ols
BN
ce e
==
o=
EE
;O:
[o[=]w

-
- I
[o[s
o R
&) [o]
alelo]
(]
&

El
A

112]3

v
=]
= [o]w]
B
~Jo[m]
==
@
[=]=]=
B
Ga
55
[~
[en e e
[=]=]r
tn [~ [-
= o] =
=]
= lw
= B
[-
==
=
o [[re
=
o=

[o =]
o=
=
)
-

=[]

4
7[5] 7[s]s

Goal 36

Depth-First and Breath-First
Search

» Breath-first search

— Because it always examines all nodes at level n before
proceeding to level n+1, it always finds the shortest
path to a goal not

— All unexpanded nodes for each level of search must be
kept in memory

— If states have a high average number of children, the
combinatorial explosion of states may prevent the
algorithm from finding a solution using available
memory

37

Depth-First and Breath-First
Search

» Depth-first search
— If the solution path is long, it will not waste time
searching a large number of “shallow” states in the graph
— Can get “lost” deep in a graph, missing shorter paths
goal or even becoming stuck in an infinitely long path
that does not lead to a goal

— Much more efficient use of search spaces because it doe:
not need to keep all the nodes at a given level on the
memory (it retains only the children of a single state)

38

Depth-First Search with Iterative
Deepening

A nice compromise on the trade-offs of the depth-
first and breadth-first search

» Performs a depth-first search of the space with
depth bound of

o If it fails to find a goal, it performs anotherpta
search with a depth bound of 2

» This continues until a goal is found
 Itis guaranteed to find a shortest path to a goal
It uses less memory space for storing the states

39

State Space Description of a
Logic System

» Symbols and predicates in propositional and
predicate calculus can be represented using
the nodes of a state space g

 Inference rules can be described by the arcs
between states

* Problems in the predicate calculus may be
solved by searching the state space

40

Fig 3.20 State space graph of a set of implications in the
propositional calculus.

q-p

r-p goal nodes
vV-q /

ST
t->r

S->Uu
S
t
start nodes

Determining if a proposition is true requires the finding

of a path from a start node to the proposition
41

And/Or Graph

 In previous example all assertions were in
the form of g- p
* And/Or graph is an extension to the be
graph (see Graph Theory in the beginning)
* It allows logic operatorer andand to be
represented in the graph
—and node: qdr
—or node: qdr

42

Fig 3.21 And/or graph of the expressioh g— p
Both g and r must be true for p to be true.

P
/1'5\
[] []
q r

Fig 3.22 And/or graph of the expressionig— p
The truth of either g or r is sufficient to prove p is true

A

43

And/Or Graph Search Example

a
b /
C h

adb - d > o o f
aLc-e€ /@
bOd - f
fog ee ed
alle - h /1:\
c a b
1. Ishtrue?
2. Ish trueifb is no longer true?
3. What is the shortest path to shbws true? "

Fred and Sam Example

1. Fredis a collie.
collie(fred).

2. Sam is Fred’s master.
master(fred,sam).

3. The day is Saturday.
day(saturday).

4. Itis cold on Saturday.
— (warm(saturday)).

5. Fred is trained.
trained(fred).

6. Spaniels are good dogs and so are trained collies.
Vv X[spaniel(X) v (collie(X) A trained(X)) —» gooddog(X)]

7. Ifadogisa good dog and has a master then he will be with his master.
v (X,Y,Z) [gooddog(X) A master(X,Y) A location(Y,Z) — location(X,Z)]

8. Ifitis Saturday and warm, then Sam is at the park.
(day(saturday) A~ warm(saturday)) — location(sam,park).

9. [Ifitis Saturday and not warm, then Sam is at the museum.
(day(saturday) A — (warm(saturday))) — location(sam,museum). 45

» Goal expression{X location(fred, X), or “where is Fred?”
* Assume the problem solver tries rules in order
» The solutiorsubgraph shows that Fred is at the museum.

Direction

location (X.Z) of search

gooddog(X) location(Y .Z)

[collis(X)] [trained{}(]] [mastar{fred‘samﬂ [day[saturday}} [ﬁ [warm[saturday}]]

[collie(fred)] [trained{frsd]] Substitutions = {fred/X, sam/Y, museum/Z}

46

The Financial Advisor Revisited

e Assume:
— # of dependents = 2
— Amount of saving = $20,000
— A steady income of $30,0(
— minsavings(X)E 5000x X
— minincome(X)= 15000 + (400 X)
« Two ways to obtain the above facts:
— Add facts as predicates to the database

— Run the program first and let the program ask the user
to enter the facts as needed

47

1. savings_account(inadequate) — investment(savings).
2. savings_account(adequate) ~ income(adequate) — investment(stocks).

3. savings_account(adequate) A income(inadequate)
— investment(combination).

4. ¥V amount_saved(X) ~ 3 Y (dependents(Y)
greater(X, minsavings(Y))) — savings_account(adequate).

5. ¥ Xamount_saved(X) ~ 3 Y (dependents(Y) A
— greater(X, minsavings(Y))) — savings_account(inadequate).

6. V Xearnings(X, steady) ~ 3Y (dependents (Y) A
greater(X, minincome(Y))) — income(adequate).

7. ¥V X earnings(X, steady) ~ 3Y (dependents(Y) A
— greater(X, minincome(Y))) — income(inadequate).

8. V X earnings(X, unsteady) — income(inadequate).
9. amount_saved(20000).
10. earnings(30000, steady).
11. dependents(2). 48

investment(X)
investment(savings)

[savi ngs_account{inadequate)]

[amoum_saved(:(]] [dependents(Y)] [— greater(X,minsavings(y))]

[amount_sa\.redimoooj] [dependentsl?]]

investmentstocks)
[_ savings account adequate)]

[amoum_saved()(]] [dgpgndem&;YJJ [grgmerib(.minsa\rings{‘(]])

[amount_saved(EOOOO]] [dependents(z;l] income(adequate)

+++++fai| here and backtrackssss«

[garningsi)c.meady]] [dependantsY)] [gr\gcﬁertx.minincomei\’]]j

"JoSIApReIouRUI Y1 Ag payareas ydelb lo/puy 9z's B

[aarnings(aoooo.steadyjj [dependents(2) J

An English Language Parser and
Sentence Generator

» A set of rewrite rules for parsing sentences in a
subset of English grammar

» Used to determine if a sequence of words
well-formed sentence (or grammatically correct)

* An expression is well formed in a grammar if it
consists of entirely of terminal symbols (words
from a dictionary) and can be reduced to the
sentence symbol through a series of
substitutions using the rewrite rules

49 50
Five rules for a simple subset of English grammar and somertainals: Fig 3.27 And/or graph for the grammar of Example 3.35. Some of the
nodes (np, art, etc) have been written more than @e to simpli
1. A sentence is a noun phrase followed by a verb phrase. d . (tph h) plity
sentence < np vp rawing the grapn.
2. A noun phrase is a noun.
oo
3. A noun phrase is an article followed by a noun.
np < artn
4. A verb phrase is a verb.
vp &V
5. A verb phrase is a verb followed by a noun phrase.
Vvp <>V np
6. art<— a
7. art < the
(“a” and “the” are articles) likes bites likes bites
8. n< man
man dog a the man dog
9. n«< dog
(“man” and “dog” are nouns)
10. v« likes
11. v <« bites man dog a the man dog
(“likes” and “bites” are verbs) 51 52

Fig 3.28 Parse tree for the sentence “The dog bité#se man.” Note this is a
subtree of the graph of fig 3.27.

| senlenceJ

the dog bites the man

53

