
 

ESTIMATION OF PARAMETERS USING BEST LINEAR UNBIASED AND 

LIKELIHOOD METHOOD 

 

a) BEST LINEAR UNBIASED ESTIMATION METHOD 

To derive the BLUE of the parameters 𝛼 𝑎𝑛𝑑 𝛽 requires the estimators to be; 

i. A linear combination of sample observations. That is , �̃� = ∑ 𝑐𝑖𝑦𝑖  where c 

=(c1,c2,…,cn) are constants to be determined such that , 

ii. �̃�is unbiased 

iii. �̃� has minimum variance. 

For unbiasedness  𝐸(𝛽) = 𝐸(∑ 𝑐𝑖𝑦𝑖) = 𝛽. 
Proof: 

• 𝐸(�̃�) = 𝐸(∑ 𝑐𝑖𝑦𝑖) = ∑ 𝑐𝑖𝐸(𝑦𝑖) but 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖 

• 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑖𝑛𝑔 𝑓𝑜𝑟 𝑦 

• 𝐸(∑ 𝑐𝑖𝑦𝑖) = ∑ 𝑐𝑖𝐸(𝛼 + 𝛽𝑥𝑖 + 휀𝑖) = ∑ 𝑐𝑖(𝛼 + 𝛽𝑥𝑖) = 𝛼 ∑ 𝑐𝑖 + 𝛽 ∑ 𝑐𝑖𝑥𝑖 

• 𝑓𝑜𝑟  �̃� to be unbiased; ∑ 𝑐𝑖 = 0 𝑎𝑛𝑑 ∑ 𝑐𝑖𝑥𝑖 = 1. 

• 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 above conditions are satisfied then; 𝐸(�̃�) = 𝐸(∑ 𝑐𝑖𝑦𝑖) =

𝛽 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑. 
 

The variance for �̃� = 𝑣(∑ 𝑐𝑖𝑦𝑖) =
𝛿2

∑(𝑥𝑖−�̅�)2
. 

 

EXERCISE: DETERMINE THE FORMULA FOR THE ESTIMATOR �̃�.  
 

 

b)   ESTIMATION  USING THE MAXIMUM LIKELIHOOD 

ESTIMATION  METHOD (MLE) 

 
A method of point estimation with some stronger theoretical properties than the 

method of OLS is the method of maximum likelihood (ML).  since from the 

regression model, the error terms  ui are assumed to be normally distributed, the ML 

and OLS estimators of the regression coefficients, the β’s, are identical, and 

this is true of simple as well as multiple regressions. The ML estimator of σ2 is 

Σˆu2
i /n. This estimator is biased, whereas the OLS estimator of σ2 =Σˆui

2/n-2, is 

unbiased. But comparing these two estimators of σ2, we see that as the sample size 

n gets larger the two estimators of σ2 tend to be equal. Thus, asymptotically (i.e., as 

n increases indefinitely), the ML estimator of σ2 is also unbiased. 

 



 (a) Compared to ML, the OLS is easy to apply; (b) the ML and OLS estimators of 

β1 and β2 are identical (which is true of multiple regressions too); and (c) even in 

moderately large samples the OLS and ML estimators of σ2 do not differ vastly. 

Appendix 4A 
 

 Maximum Likelihood Estimation of Two-Variable Regression Model 

 

Assume that in the two-variable model Yi = β1 + β2Xi + ui ,the Yi are normally and 

independently distributed with mean = β1 + β2Xi and variance = σ2. As a result, the 

joint probability density function of Y1, Y2, . . . , Yn, given the preceding mean and 

variance, can be written as f (Y1, Y2, . . . , Yn | β1 + β2Xi , σ2). 

 

But in view of the independence of the Y’s, this joint probability density function 

can be written as a product of n individual density functions as 

f (Y1, Y2, . . . , Yn | β1 + β2Xi , σ2) = f (Y1 | β1 + β2Xi , σ2) f (Y2 | β1 + β2Xi , σ2) · · 

· f (Yn | β1 + β2Xi , σ2) (1) 

where ; f (Yi ) = 1/σ√2πexp−(Yi − β1 − β2Xi )2/2σ2  (2) which is the density function of a 

normally distributed variable with the given mean and variance. 

 

Substituting Equation (2) for each Yi into Equation (1) gives 

f (Yi , Y2, . . . , Yn | β1 + β2Xi , σ2) = 1/σn(√2π)n exp-Σ(Yi − β1 − β2Xi )2/2σ2 (3) 

If Y1, Y2, . . . , Yn are known or given, but β1, β2, and σ2 are not known, the function 

in Equation (3) is called a likelihood function, denoted by LF(β1, β2, σ2), and 

written as LF(β1, β2, σ2) = 1/σ n(√2π)n exp−Σ(Yi − β1 − β2Xi )2/2σ2  (4). 

 

The method of maximum likelihood, as the name indicates, consists of  estimating 

the unknown parameters in such a manner that the probability of observing the given 

Y’s is as high (or maximum) as possible. Therefore, we have to find the maximum 

of the function in Equation (4). For differentiation it is easier to express Equation (4) 

in the log term as follows.2  

ln LF = −n ln σ − n2ln (2π) − Σ(Yi − β1 − β2Xi )2 /2σ2 = −n2ln σ2 − n2ln (2π) – Σ(Yi 

− β1 − β2Xi )2/2σ2     (5) 

 

If β1, β2, and σ2 are known but the Yi are not known, Eq. (4) represents the joint 

probability density function—the probability of jointly observing the Yi. 

 

Differentiating Equation (5) partially with respect to β1, β2, and σ2, we obtain 

∂ ln LF/∂β1= − 1/σ2(Yi − β1 − β2Xi )(−1) (6) 

∂ ln LF/∂β2= − 1/σ2(Yi − β1 − β2Xi )(−Xi ) (7) 



∂ ln LF/∂σ2= − n2σ2+ 1/2σ4^(Yi − β1 − β2Xi )2 (8) 

Setting these equations equal to zero (the first-order condition for optimization) and 

letting ˜ β1, ˜ β2, and ˜σ 2 denote the ML estimators, we obtain  

1/˜σ2(Yi − ˜ β1 − ˜ β2Xi ) = 0 (9) 

1/˜σ2(Yi − ˜ β1 − ˜ β2Xi )Xi = 0 (10) 

− n2˜σ 2+ 1/2˜σ 4_(Yi − ˜ β1 − ˜ β2Xi )2 = 0 (11) 

After  simplifying, Eqs. (9) and (10) yield 

 

ΣYi = n ˜ β1 + ˜ β2ΣXi (12)       ΣYi Xi = ˜ β1ΣXi + ˜ β2ΣX2i (13) 

which are precisely the normal equations of the least-squares theory . 

Therefore, the ML estimators, the ˜ β’s, are the same as the OLS estimators, the ˆ 

β’s.This equality is not accidental. Examining the likelihood (5), we see that the 

last term enters with a negative sign. Therefore, maximizing Equation (5) amounts 

to minimizing this term, which is precisely the least-squares approach. 

 

Substituting the ML ( = OLS) estimators into Equation (11) and simplifying, we 

obtain the ML estimator of ˜σ 2 as;˜σ2 = 1/nΣ(Yi − ˜ β1 − ˜ β2Xi )2= 1/nΣˆui
2 (14). 

From Equation (14) it is obvious that the ML estimator ˜σ 2 differs from the OLS 

estim ator  ˆσ2 = [1/(n − 2)]Σˆui
2 , which was shown to be an unbiased estimator of 

σ2.  Thus, the ML estimator of σ2 is biased. The magnitude of this bias can be easily 

determined as follows. 

 

We use ˜ (tilde) for ML estimators and ˆ (cap or hat) for OLS estimators. 

 

Taking the mathematical expectation of Equation (14) on both sides, we obtain 

E(˜σ 2) = 1/nEΣˆu I 2=Σn – 2/nΣσ2  = σ2 − 2nσ2     (15) which shows that ˜σ 2 is 

biased downward (i.e., it underestimates the true σ2) in small samples. But notice 

that as n, the sample size, increases indefinitely, the second term in Equation (15), 

the bias factor, tends to be zero. Therefore, asymptotically (i.e., in a very large 

sample), ˜σ 2 is unbiased too, that is, lim E(˜σ 2) = σ2 as n→∞. It can further be 

proved that ˜σ 2 is also a consistent estimator4; that is, as n increases indefinitely, 

˜σ 2 converges to its true value σ2. 

 

 

REGRESSION THROUGH THE ORIGIN 

There are occasions when the two-variable Population Regression Function (PRF) 

assumes the following form:  Yi = β2 Xi  + u  

In this model the intercept term is absent or zero, hence the name regression 

through the origin. 

 



Given a Sample Regression Function (SRF) namely, 

Yi = ˆ β2 Xi + ˆui ………………………………..(a) 

Now applying the OLS method  we obtain the following formulas 

for ˆ β2 and its variance . 

ˆ β2 =ΣXiYi/ΣXi
2   ,  𝑣(𝛽2̂) =

𝛿2

∑ 𝑋𝑖
2 and 𝛿2̂ =

∑ 𝑢𝑖
2

𝑛−1
 

when the intercept term is included in the model: Yi = ̂β1+ˆ β2 Xi + ˆui 

The  formulas for the estimators are;  

➢ β2 =Σxi yi /Σxi
2  

➢ var ( ˆ β2) = σ2/Σxi
2 

➢ ˆσ2 =Σˆui
2 /n− 2, where ui

2 is the error term determined using ∑ 𝑌 − 𝑌⏞)2. 
 

Where x and y are deviations from the mean. 

Although the interceptless or zero intercept model may be appropriate on occasions, 

there are some features of this model that need to be noted. First, Σˆui, which is 

always zero for the model with the intercept term (the conventional model), need not 

be zero when that term is absent. In short, Σˆui need not be zero for the regression 

through the origin. 

 

 Second, r2, the coefficient of determination, which is always nonnegative for the 

conventional model, can on occasions turn out to be negative for the interceptless 

model! This anomalous result arises because  r2 explicitly assumes that the intercept 

is included in the model. Therefore, the conventionally computed r2 may not be 

appropriate for regression-through-the-origin models. But one can compute what is 

known as the raw r2 for such models, which is defined as 

raw r2  = (ΣXiYi)2 /ΣXi
2 ΣYi

2 

Note: These are raw (i.e., not mean-corrected) sums of squares and cross products. 

Although this raw r2 satisfies the relation 0 < r2 < 1, it is not directly comparable 

to the conventional r2 value. For this reason some people do not report the r2 value 

for zero intercept regression models. 

 

Because of these special features of this model, one needs to exercise great caution 

in using the zero intercept regression model. Unless there is very strong a priori 

expectation, one would be well advised to stick to the conventional, intercept-present 

model. This has a dual advantage. First, if the intercept term is included in the model 

but it turns out to be statistically insignificant (i.e., statistically equal to zero), for all 

practical purposes we have a regression through the origin.  Second, and more 

important, if in fact there is an intercept in the model but we insist on fitting a 

regression through the origin, we would be committing a specification error, thus 

violating Assumption 9 of the classical linear regression model. 



Example: using the data below for minimum bank deposits in thousands of 
shillings and number of new accounts opened., estimate the regression equation 

assuming regression through the origin,  establish the variance S2
yx 

  and the 

raw coefficient of determination. 

 

Branch Minimum deposit (x) New accounts (y) 

A 125 160 

B 100 112 

C 200 124 

D 75 28 

E 150 152 

F 175 156 

G 75 42 

H 175 124 

I 125 150 

J 200 104 

K 100 136 

 

 

 
 


