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LECTURE NOTES 

STATISTICAL INFERENCE II (STA 2103) 

YEAR  TWO SEMESTER ONE 

By the end of the course unit, students should be able to; 

➢ Estimate parameters using different methods 

➢ Test hypotheses 

➢ State and prove the different properties of estimators. 

COURSE CONTENT 

➢ Introduction [definition of concepts] 

➢ Estimation methods of estimators 

• Point estimation methods [method of moments, maximum likelihood estimation 

method, Bayesian method, least squares estimation method ,minimum chi-square 

method etc] 

• Interval estimation methods  

➢ Properties of estimators/ evaluating the goodness of estimators 

• Unbiasedness [tests for unbiasedness of estimators] 

• Sufficiency 

• Completeness 

• Best linear unbiased estimators 

• Uniform minimum variance unbiased estimators 

• Efficiency 

• Consistency 

➢ Distributions with their derivations 

• Normal distribution [mgf,mean and variance] 

• T-distribution 

• Fisher’s distribution 

➢ Hypothesis testing 

• Definition of terms and concepts 

• Best critical region 

• Neyman Pearson Lemma for the best critical region 

• Likelihood ratio tests 

 

REFERENCES 

• Probability and mathematical statistics by Prasanna Sahoo 

• Introduction to mathematical statistics by Robert V. Hogg and Allen T. Craig 
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CHAPTER  ONE 

1.0 INTRODUCTION 

Statistical inference centres on the rules and processes of using sample data in 

order to gain more information about the underlying population from which the 

sample was collected. It enables us to make judgements about population 

parameters based on sample statistics. It requires estimation of parameters and 

testing hypotheses about the population parameters. 

1.1 definitions 

a) Parameter: numerical value describing the characteristics of a population 

e.g population mean and variance. 

b) Statistic: numerical value describing the characteristic of a sample e,g 

sample mean. 

c) Estimator: is a random variable whose value varies from sample to sample 

d) Best unbiased estimator: an estimator that is closest to the population 

parameter among all the unbiased estimators. 

1.2 properties of estimators 

The following are the desirable properties of estimators; 

a) Unbiasedness : an estimator 𝜃 is said to be unbiased if its expected value is 

equal to the unknown population parameter 𝜃. 𝑡ℎ𝑎𝑡 𝑖𝑠 𝐸(𝜃̂) = 𝜃. 

b) Sufficiency: an estimator is said to be sufficient if it uses up all the 

information about a population parameter contained in the sample. 

c) Efficiency : if it has minimum variance among all unbiased estimators. 

d) Consistency : an estimator is consistent if it approaches the unknown 

population parameter as sample size increases.𝜃 → 𝜃 𝑎𝑠 𝑛 → ∞. 

2.0 ESTIMATION  OF PARAMETERS 

Parameters can be estimated using point estimation methods and interval 

estimation methods. The point estimation methods give a single value for the 

unknown population parameter while the interval estimation methods give a 
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range of values for the unknown population parameter. The point estimation 

methods include; 

a) Method of moments. 

There are two types of moments; 

i. Raw moments: these are moments about the origin or about zero. 

Let x1,x2,…,xn be a random sample from a population, the rth sample 

moment about zero is defined as the expected value of xr denoted as 

𝜇𝑟  𝑤ℎ𝑒𝑟𝑒 𝜇𝑟 = 𝐸(𝑥𝑟) = ∑ 𝑥𝑟𝑓(𝑥)𝑎𝑙𝑙𝑥  for x  discrete and 𝐸(𝑥𝑟) =

∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
𝑎𝑙𝑙 𝑥

 for x continuous. When r = 1, 𝜇1 = 𝐸(𝑥1) = 𝑥̅ , this is 

the mean of the random variable x. when r = 2, 𝜇2 = 𝐸(𝑥2), but the 

variance of the random variable x is 𝑣(𝑥) = 𝐸(𝑥2) − (𝐸(𝑥))2 =

𝜇2 − 𝜇1.
2  

EXAMPLE  ONE 

If x has a pdf f(x)= x, 0<x<2, find the third raw moment, mean and variance of x. 

SOLUTION 

i. The third raw moment is 𝑟 = 3 𝑖𝑠 𝜇3 = ∫ 𝑥3𝑓(𝑥)𝑑𝑥 = ∫ 𝑥3 ∗ 𝑥𝑑𝑥 =
2

0𝑎𝑙𝑙 𝑥

∫ 𝑥4𝑑𝑥 =
𝑥5

5
|

0

2

=
25

5
=

32

5
= 6.4.

2

0
 

ii. Mean is when r =2, 𝜇2 = ∫ 𝑥2 ∗ 𝑥𝑑𝑥 = ∫ 𝑥3𝑑𝑥 =
𝑥4

4
|

0

2

=
24

4
=

16

4
= 4.

2

0

2

0
 

iii. 𝑣(𝑥) = 𝐸(𝑥2) − (𝐸(𝑥))2 = 𝜇2 − 𝜇1.
2   where 𝜇1 = ∫ 𝑥1 ∗ 𝑥𝑑𝑥 =

𝑥3

3
|

0

2

=
2

0

23

3
=

8

3
, therefore the variance 𝑣(𝑥) = 4 − (

8

3
)2 = 4 −

64

9
= −3.11. 

EXAMPLE TWO 

Find the second raw moment given the pdf f(x)= 2x, x= 0,1,2. Find mean and 

variance. 

SOLUTION 
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i. Second raw moment is for r = 2, 𝜇2 = ∑ 𝑥2𝑓(𝑥) = ∑ 𝑥2 ∗ 2𝑥 =2
0

2
0

∑ 2𝑥3 = 2(03 + 13 + 23) = 2(1 + 16) = 2 ∗ 17 = 34.2
0  

ii. Mean is r =2, 𝜇2 = 34 

iii. Variance is 𝑣(𝑥) = 𝐸(𝑥2) − (𝐸(𝑥))2 = 𝜇2 − 𝜇1.
2  where 𝜇1 =

∑ 𝑥1 ∗ 2𝑥 = ∑ 2𝑥2 = 2(02 + 12 + 22) = 2(1 + 4) = 2 ∗ 5 =2
0

2
0

10. 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑣(𝑥) = 34 − 102 = −66. 

 

The other type of moments is; 

ii. Central moment: this is the moment about the mean. The rth 

moment about the mean of a random variable x is the expected 

value of (𝑥 − 𝜇)𝑟  𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝜇𝑟. that is  𝜇𝑟 = 𝐸(𝑥 − 𝜇)𝑟 =

∑ (𝑥 − 𝜇)𝑟𝑓(𝑥) 𝑜𝑟 𝜇𝑟 = ∫ (𝑥 − 𝜇)𝑟𝑓(𝑥)𝑑𝑥
𝑎𝑙𝑙𝑥𝑎𝑙𝑙 𝑥  for x is discrete or 

continuous respectively. 

When r = 1, 𝜇1 = 𝐸(𝑥 − 𝜇)1 = 𝐸(𝑥) − 𝜇 = 𝜇 − 𝜇 = 0. when r = 2, 

𝜇2 = 𝐸(𝑥 − 𝜇)2 = 𝑣𝑎𝑟(𝑥). 

EXAMPLE THREE 

Using the pdf f(x)=1, 0<x<1 . find the fourth central moment. 

SOLUTION 

The fourth central moment is when r = 4, 𝜇4 = ∫ (𝑥 − 𝜇)4𝑓(𝑥)𝑑𝑥.
1

0
  but  𝜇 =

∫ 𝑥𝑓(𝑥)𝑑𝑥 =
𝑥2

2
| =

1

2

1

0
 

𝜇4 =
(𝑥 − 𝜇)5

5
|

0

1

=
(1 − 0.5)5

5
−

(0 − 0.5)5

5
= 0.00625 + 0.00625 = 0.0125. 
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2.1 PARAMETER ESTIMATION 

a)  METHOD OF  MOMENTS 

let x1,x2,…,xn be a random sample from a population x with pdf 

𝑓(𝑥; 𝜃1, 𝜃2, … , 𝜃𝑚) 𝑤ℎ𝑒𝑟𝑒 𝜃1, 𝜃2, … , 𝜃𝑚 are m unknown parameters. Let 

E(xk)=∫ 𝑥𝑘𝑓(𝑥; 𝜃1, 𝜃2, … , 𝜃𝑚)𝑑𝑥
∞

−∞
 be the kth population moment about zero. Let  

𝑚𝑘 =
1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1  be the kth sample moment about zero. The estimator for the 

parameters 𝜃1, 𝜃2, … , 𝜃𝑚 are obtained by equating the first m population 

moments (if they exist) to the first m sample moments, that is; 

E(X)= M1, E(x2)=M2, E(X3)=M3,…,E(Xm)=Mm. 

EXAMPLE ONE 

Let 𝑿~𝑵(𝝁, 𝜹𝟐) and x1,…,xn be a random sample of size n from the population x. 

what are the estimators of the population parameters 𝜇 𝑎𝑛𝑑 𝛿2 using the method 

of moments. 

SOLUTION 

(a) For a normal population E(x)=µ and from moments E(x)=M1 where 𝑀1 =
1

𝑛
∑ 𝑥𝑖 

𝑛
𝑖=1 = 𝑥,̅ therefore the estimator for the mean 𝜇 = 𝑥.̅ 

(b) For the variance 𝛿2 = 𝐸(𝑥2) −

𝜇2. 𝑚𝑎𝑘𝑖𝑛𝑔 𝐸(𝑥2)𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑛𝑔 𝑖𝑡 𝑡𝑜 𝑀2. 

𝛿2 = 𝑀2 − 𝜇2 =
1

𝑛
∑ 𝑥𝑖

2 − 𝑥̅2 =
1

𝑛
∑(𝑥𝑖 − 𝑥)̅̅ ̅2

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝛿2 =
1

𝑛
∑ (𝑥𝑖 − 𝑥)̅̅ ̅2𝑛

𝑖=1   as the estimator for the variance. 

EXAMPLE TWO 

Given the pdf 𝑓(𝑥; 𝜃) = {
1

𝜃
 𝑖𝑓 0 < 𝑥 < 𝜃

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
. Find an estimator for 𝜃 by the method 

of moments. 
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SOLUTION 

𝑬(𝒙) = ∫ 𝒙𝒇(𝒙)𝒅𝒙 = ∫ 𝒙
𝜽

𝟎

∗
𝟏

𝜽
𝒅𝒙 =

𝒙𝟐

𝟐𝜽
|

𝟎

𝜽

=
𝜽𝟐

𝟐𝜽
=

𝜽

𝟐

𝜽

𝟎

 

Equate this to the sample moment; 𝐸(𝑥) = 𝑀1 = 𝑥̅ 

𝑥̅= 
𝜃

2
, 𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝜃 = 2𝑥̅  as the estimator for θ. 

EXAMPLE THREE 

Given the pdf 𝑓(𝑥; 𝜃) = {
1

𝜃
 𝑖𝑓 − 𝜃 < 𝑥 < 𝜃

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
. Find an estimator for 𝜃 by the 

method of moments. 

SOLUTION 

𝑬(𝒙) = ∫ 𝒙𝒇(𝒙)𝒅𝒙 = ∫ 𝒙
𝜽

−𝜽

∗
𝟏

𝜽
𝒅𝒙 =

𝒙𝟐

𝟐𝜽
|

−𝜽

𝜽

=
𝜽𝟐

𝟐𝜽
−

𝜽𝟐

𝟐𝜽
= 𝟎

𝜽

−𝜽

 

The moment does not exist at E(x), try E(X2) 

𝐸(𝑥2) = ∫ 𝑥2𝑓(𝑥)𝑑𝑥 = ∫ 𝑥2 ∗
1

𝜃
𝑑𝑥 =

𝑥3

3𝜃
|

−𝜃

𝜃
𝜃

−𝜃
=

𝜃2

3
+

𝜃2

3
=

2𝜃2

3

𝜃

−𝜃
  

Equating E(x2) to M2= 
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1  

1

𝑛
∑ 𝑥𝑖

2 =
2𝜃2

3
=

3

2𝑛
∑ 𝑥𝑖

2 = 𝜃2𝑛
𝑖=1

𝑛
𝑖=1 , this implies that 𝜃 = √

3

2𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 . 

TRY: Let x1,x2,…,xn be a random sample of size n from a population with pdf 

𝒇(𝒙; 𝜽) = {𝜽𝒙𝜽−𝟏, 𝟎 < 𝑥 < 1
𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

. Using the method of moments, find an estimator 

for θ. If x1= 0.2, x2= 0.6,x3= 0.5,x4= 0.3 is a random sample of size 4, what is the 

estimate of θ? 
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b) MAXIMUM LIKELIHOOD ESTIMATION METHOD (MLE) 

Maximum likelihood estimators are the values that maximize the log likelihood 

function for a random sample X from a population with pdf f(x;θ) where θ is 

unknown. The estimator is obtained by determining the first derivative of the log 

likelihood function with respect to θ. The likelihood function is given as 𝐿(𝑥; 𝜃) =

∏ 𝑓(𝑥; 𝜃) = 𝑓(𝑥1; 𝜃) ∗ 𝑓(𝑥2; 𝜃) ∗∗∗ 𝑓(𝑥𝑛; 𝜃)𝑛
𝑖=1  

The log likelihood function is; 𝑙𝑜𝑔𝐿(𝑥; 𝜃) = ∑ 𝑙𝑜𝑔𝑓(𝑥; 𝜃).𝑛
𝑖=1  

EXAMPLE ONE 

If x1,x2,…,xn is a random sample from a distribution with density function 

𝑓(𝑥; 𝜃) = {(1 − 𝜃)𝑥−𝜃 , 0 < 𝑥 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

. What is the MLE of θ? 

SOLUTION 

𝐿(𝑋; 𝜃) = ∏(1 − 𝜃)𝑥−𝜃 = (1 − 𝜃)𝑛 ∏ 𝑥−𝜃

𝑛

𝑖=1

 

Determine the log likelihood function; 

𝑙𝑜𝑔𝑙 = 𝑛𝑙𝑜𝑔(1 − 𝜃) − 𝜃 ∑ 𝑙𝑜𝑔𝑥 

Maximize the log likelihood function with respect to θ. 

𝑑𝑙𝑜𝑔𝑙(𝜃)

𝑑𝜃
=

−𝑛

(1 − 𝜃)
− ∑ 𝑙𝑜𝑔𝑥 

Equate the result to zero. 

𝑛

(1 − 𝜃)
= − ∑ 𝑙𝑜𝑔𝑥, 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜃 
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𝑛

− ∑ 𝑙𝑜𝑔𝑥
= (1 − 𝜃), 𝜃 = 1 +

𝑛

∑ log 𝑥
 

EXAMPLE TWO: determine the MLE for λ given a poisson distribution with pdf 

𝑓(𝑥; 𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
 

SOLUTION 

• Determine the likelihood function 𝑙(𝑥; 𝜆) = 𝛱𝑓(𝑥; 𝜆) =
𝑒−𝑛𝜆𝜆∑ 𝑥

𝛱𝑥!
 

• Determine the log likelihood function 𝑙𝑜𝑔𝑙(𝑥; 𝜆) = −𝑛𝜆𝑙𝑜𝑔𝑒 +

∑ 𝑥𝑙𝑜𝑔𝜆 − ∑ 𝑙𝑜𝑔𝑥! 

• Maximize the log likelihood function. 
𝑑𝑙𝑜𝑔(𝑥;𝜆)

𝑑𝜆
= −𝑛 +

∑ 𝑥

𝜆
= 0 

• Solve for λ; 𝜆 =
∑ 𝑥

𝑛
= 𝑥̅, as the estimator for λ. 

Try: for the random sample x from a population with pdf 𝒇(𝒙; 𝜷) =

{
𝒙𝟔𝒆

−
𝒙
𝜷

𝜞𝟕𝜷𝟕
, 𝒊𝒇 𝟎 < 𝑥 < ∞.

𝟎 𝒆𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆

 determine the MLE for β. 

c) LEAST SQUARES ESTIMATION METHOD (LSE) 

This is suitable for estimating moments about zero of a population distribution. To 

derive the LSE of µr for a random sample of variables x1,x2,…,xn; 

• Consider a random variable x and its rth moment about zero; E(xr)=µr 

• Using the sum ∑(𝑥𝑟 − 𝜇𝑟)2, determine the value of µr that makes the 

above sum as small as possible by differentiating the sum of squares with 

respect to µr and equating the result to zero. 

EXAMPLE: DETERMINE THE LSE GIVEN r =1 

SOLUTION 

• From E(x1)=µ1, the sum of squares is ∑(𝑥 − 𝜇1)2 

• Differentiate with respect to µ1 and equate the result to zero 

• 
𝑑 ∑(𝑥−𝜇1)2

𝑑𝜇1
= −2 ∑(𝑥 − 𝜇1) = 0; ∑ 𝑥 − 𝑛𝜇1 = 0 
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• 𝜇̂ =
∑ 𝑥

𝑛
= 𝑥̅ 

TRY : DETERMINE THE ESTIMATOR GIVEN r= 2. 

 

2.2 INTERVAL ESTIMATION METHODS FOR PARAMETERS 

Let x1, x2, …,xn be a random sample of size n from a population with pdf f(x;θ) 

where θ is an unknown parameter. The interval estimator of θ is a pair of 

statistics L=L(x1,x2,…,xn) and U=U(x1,x2,…,xn) with L <=U such that if x1, ..,xn is a set 

of sample data, then θ belongs to the interval [L(x,..,xn), U(x1,..,xn)]. The probability 

of θ being on the random interval (L,U) is 1-α, that is P[L ≤ 𝜃 ≤ 𝑈]=1-α. Where L 

is the lower confidence interval and U is the upper confidence interval, (1-α) is the 

confidence coefficient or degree of confidence. 

The interval estimation methods include;  pivotal quantity method, MLE, Bayesian 

method, Invariant method, inversion of test statistic etc. 

2.2.1 PIVOTAL QUANTITY METHOD 

Definition: let x1,x2,…,xn be a random sample of size n from a population x with 

probability density function f(x;θ) where θ is an unknown parameter. A pivotal 

quantity Q is a function of x1,x2,…,xn and θ whose probability distribution is 

independent of the parameter θ. It is given as Q(x1,x2,…,xn, θ). 

If Q= Q(x1,x2,…,xn,θ) is a pivot, then a (1-α)100% confidence interval for θ can be 

constructed as follows; 

➢ Find two values a and b such that P(a≤ 𝑄 ≤ 𝑏) = 1 − 𝛼. 

➢ Convert the inequality 𝑎 ≤ 𝑄 ≤ 𝑏 into the form 𝐿 ≤ 𝜃 ≤ 𝑈. 

EXAMPLE: if x is a normal population with mean unknown µ and known variance 

δ2 and pivotal quantity as 𝑄 =
𝑥̅−𝜇

𝜎
, construct a (1-2α)100% confidence interval for 

µ. 

Solution 
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Since the population x is normally distributed with mean µ and variance δ2, the 

sample mean 𝑥̅ is also normal with the same mean µ and variance  
𝛿

√𝑛
 . hence  

1 − 2𝛼 = 𝑃(−𝑍𝛼 ≤ 𝑄 ≤ 𝑍𝛼) 

= 𝑃 (−𝑍𝛼 ≤
𝑥̅ − 𝜇

𝛿

√𝑛

≤ 𝑍𝛼) = 𝑃 (−𝑍𝛼

𝛿

√𝑛
≤ 𝑥̅ − 𝜇 ≤ 𝑍𝛼

𝛿

√𝑛
) 

=𝑃(𝑥̅ − 𝑍𝛼
𝛿

√𝑛
≤ 𝜇 ≤ 𝑥̅ + 𝑍𝛼

𝛿

√𝑛
) 

Therefore, (1-2α)100% confidence interval for µ is [𝑥̅ − 𝑍𝛼
𝛿

√𝑛
, 𝑥̅ + 𝑍𝛼

𝛿

√𝑛
 ] 

a) CONFIDENCE INTERVAL FOR POPULATION MEAN 

Let x1,x2,…,xn be a random sample from a normal population with mean µ and 

variance δ2 where µ is an unknown parameter and variance is a known 

parameter. To construct this pivotal quantity , find the likelihood estimator of the 

parameter µ which is 𝑥̅.  Since each of the xi is approximately normally distributed 

with mean µ and variance δ2, the distribution of the sample 

mean𝑥 ̅𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝜇 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
𝛿2

𝑛
. The pivotal 

function is 
𝑥̅−𝜇

𝛿

√𝑛

 which is used to construct a confidence interval for the mean µ. 

The confidence interval is ; 

• 1 − 𝛼 = 𝑃[−𝑍𝛼

2
≤

𝑥̅−𝜇
𝛿

√𝑛

≤ 𝑍𝛼

2
] 

• = 𝑝[−𝑍𝛼

2

𝛿

√𝑛
≤ 𝑥̅ − 𝜇 ≤ 𝑍𝛼

2

𝛿

√𝑛
] 

• =p[𝑥̅ − 𝑍𝛼

2

𝛿

√𝑛
≤ 𝜇 ≤ 𝑥̅ + 𝑍𝛼

2

𝛿

√𝑛
] 

• When x is normally distributed with known variance δ2, confidence interval 

will be given by ; [𝑥̅ − 𝑍𝛼

2

𝛿

√𝑛
, 𝑥̅ + 𝑍𝛼

2

𝛿

√𝑛
] 
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EXAMPLE: let x1,x2,..,x40 be a random sample of size 40 from a distribution with 

known variance and unknown mean µ. If ∑ 𝑥𝑖 = 286.56 𝑎𝑛𝑑 𝛿2 = 10.40
𝑖=1  what is 

the 90% confidence interval for the population mean µ. 

SOLUTION 

• Using the interval 𝑥̅ − 𝑍𝛼

2

𝛿

√𝑛
≤ 𝜇 ≤ 𝑥̅ + 𝑍𝛼

2

𝛿

√𝑛
] 

• Where α=10%, z0.05=1.64 

• 𝑥̅ =
∑ 𝑥

𝑛
=

286.56

40
= 7.164 

• 7.164 − (1.64 ∗
√10

√40
≤ 𝜇 ≤ 7.164 + (1.64 ∗

√10

√40
) = [6.344 , 7.984] 

TRY: what is the 95% confidence interval for the mean µ given a sample of size 11, 

∑ 𝑥 = 132, 𝛿2 = 9.9.11
𝑖=1  

b) CONFIDENCE INTERVAL FOR µ FOR UNKNOWN VARIANCE. 

The pivotal quantity Q(x1,x2,…,xn;; µ)=
𝑥̅−𝜇

𝑠

√𝑛

~𝑡𝑛−1, where n-1 are the degrees of 

freedom. The confidence interval  for the mean will be; 

• 1 − 𝛼 = 𝑝[−𝑡𝛼

2
,𝑛−1 ≤

𝑥̅−𝜇
𝑠

√𝑛

≤ 𝑡𝛼

2
,𝑛−1] 

• 𝑚𝑎𝑘𝑒 𝜇 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 

• P[𝑥̅ − 𝑡𝛼

2
,𝑛−1

𝑠

√𝑛
≤ 𝜇 ≤ 𝑥̅ + 𝑡𝛼

2
,𝑛−1

𝑠

√𝑛
] 

• Confidence interval is [𝑥̅ − 𝑡𝛼

2
,𝑛−1

𝑠

√𝑛
, 𝑥̅ + 𝑡𝛼

2
,𝑛−1

𝑠

√𝑛
] 

EXAMPLE:  a random sample of size 9 from a normal population yields the 

observed statistics 𝑥̅ = 5 𝑎𝑛𝑑 
1

8
∑ (𝑥𝑖 − 𝑥̅)2 = 36.9

𝑖=1  what is the 95% confidence 

interval for the mean µ? 

SOLUTION 

• Using the interval [𝑥̅ − 𝑡𝛼

2
,𝑛−1

𝑠

√𝑛
≤ 𝜇 ≤ 𝑥̅ + 𝑡𝛼

2
,𝑛−1

𝑠

√𝑛
] 

• Where α=0.05 and t=2.306 
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• 5 − (2.306 ∗
6

√9
) ≤ 𝜇 ≤ 5 + (2.306 ∗

6

√9
) = [0.388, 9.612] 

 

c) CONFIDENCE INTERVAL FOR THE POPULATION VARIANCE δ2. 

The pivotal quantity Q(x1,x2,..,xn; δ2)=∑ (
𝑥𝑖−𝜇

𝛿
)2𝑛

𝑖=1  when mean µ is known and 

variance is unknown. This has a chi-square distribution with n degrees of 

freedom. The confidence interval for the variance δ2 is determined as; 

• 1 − 𝛼 = 𝑃[𝑥𝛼

2
,𝑛

2 ≤ ∑ (
𝑥𝑖−𝜇

𝛿
)2𝑛

𝑖=1 ≤ 𝑥
1−

𝛼

2
,𝑛

2 ] 

• = 𝑝[
1

𝑥
1−

𝛼
2

,𝑛

2 ≤
𝛿2

∑ (𝑥𝑖−𝜇)2𝑛
𝑖=1

≤
1

𝑥𝛼
2

2] 

• = 𝑃[
∑ (𝑥−𝜇)2𝑛

𝑖=1

𝑥
1−

𝛼
2

,𝑛

2 ≤ 𝛿2 ≤
∑ (𝑥−𝜇)2𝑛

𝑖=1

𝑥𝛼
2

,𝑛

2 ] as the confidence interval. 

EXAMPLE : a random sample of size 9 from a normal population with mean 5 

yields the observed statistics as 
1

8
∑ 𝑥2 = 39.125 𝑎𝑛𝑑 ∑ 𝑥 = 45.9

𝑖=1
9
𝑖=1  what is the 

95% confidence interval for the variance δ2? 

SOLUTION 

• Using the interval 𝑃[
∑ (𝑥−𝜇)2𝑛

𝑖=1

𝑥
1−

𝛼
2

,𝑛

2 ≤ 𝛿2 ≤
∑ (𝑥−𝜇)2𝑛

𝑖=1

𝑥𝛼
2

,𝑛

2 ] 

• Where α=0.05, 𝑥0.025,9
2 = 2.7, 𝑥0.975,9

2 = 19.02, 𝜇 =
45

9
= 5 

• ∑(𝑥 − 𝜇)2 = ∑(𝑥2 + 𝜇2 − 2𝑥𝜇) = ∑ 𝑥2 + 𝑛𝜇2 −

2𝜇 ∑
𝑥 = 313 + (9 ∗ 25) − (2 ∗ 5 ∗ 45) = 88.

 

• Therefore c.i is ; [
88

19.02
,

88

2.7
]= [4.627, 32.593] 

 

 

d) CONFIDENCE INTERVAL FOR THE VARIANCE FOR UNKNOWN MEAN. 
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The pivotal quantity is given by Q= 
∑(𝑥−𝑥̅)2

𝛿2
~𝑥𝑛−1

2  . the (1-α)100% confidence 

interval for the variance δ2 is; 

• 1 − 𝛼 = 𝑃 [
1

𝑥𝛼
2

,𝑛−1

2 ≤ 𝑄 ≤
1

𝑥
1−

𝛼
2

2 ] = 𝑝[
1

𝑥𝛼
2

,𝑛−1

2 ≤  
∑(𝑥−𝑥̅)2

𝛿2
≤

1

𝑥
1−

𝛼
2

2 ] 

• = 𝑃[
∑(𝑥−𝑥̅)2

𝑥
1−

𝛼
2

,𝑛−1

2 ≤ 𝛿2 ≤
∑(𝑥−𝑥̅)2

𝑥𝛼
2

2 ,𝑛−1
] 

EXAMPLE:  let x1,x2,..,xn be a random sample of size 13 from a normal distribution 

with mean µ and variance δ2. If ∑ 𝑥 = 246.61 𝑎𝑛𝑑 ∑ 𝑥2 = 4806.61.𝑛
𝑖=1

𝑛
𝑖=1  find a 

90% confidence interval  for δ2? 

SOLUTION 

• Using the interval  [
∑(𝑥−𝑥̅)2

𝑥
1−

𝛼
2

,𝑛−1

2 ,   
∑(𝑥−𝑥̅)2

𝑥𝛼
2

2 ,𝑛−1
] 

• Where 𝛼 = 10%, 𝑥0.95,12
2 = 21.03 𝑎𝑛𝑑 𝑥0.05,12

2 = 5.23 

• ∑(𝑥 − 𝑥̅)2 = ∑ 𝑥2 + 𝑛𝑥̅ − 2𝑥̅ ∑ 𝑥 = 4806.61 + (13 ∗ 18.972) −

(2 ∗ 18.97 ∗ 246.61) = 128.419 

• [
128.419

21.03
,

128.419

5.23
] = [6.107, 24.554] 

NOTE:  for a random sample x1,x2,…,xn  from a distribution N(µ, δ2) where µ and δ2 

are unknown parameters. The confidence interval for the variance is given by; 

[
(𝑛−1)𝑠2

𝑥
1−

𝛼
2,

,𝑛−1

2 ,
(𝑛−1)𝑠2

𝑥𝛼
2

,𝑛−1

2 ]. 

e) CONFIDENCE INTERVAL  FOR  PARAMETERS OF SOME DISTRIBUTIONS 

A (1-α)100%  confidence interval for the parameter θ can be constructed by 

taking the pivotal quantity (Q) as either; 𝑄 = −2 ∑ 𝑙𝑛𝐹(𝑥; 𝜃) ≈ 𝑥,2𝑛
2  𝑂𝑅 𝑄 =𝑛

𝑖=1

−2 ∑ ln (1 − 𝐹(𝑥; 𝜃)) ≈ 𝑥,2𝑛
2𝑛

𝑖=1 .  

That is; 1 − 𝛼 = 𝑃[𝑥𝛼

2
,2𝑛

2 ≤ 𝑄 ≤ 𝑥
1−

𝛼

2
,2𝑛

2 ]  and 𝐹(𝑥; 𝜃) =

∫ 𝑓(𝑥)𝑑𝑥, 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.
𝑥

0
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EXAMPLE I: if x1,x2,…,xn is a random sample from a distribution with pdf  

𝑓(𝑥; 𝜃) = {
1

𝜃
, 0 < 𝑥 < 𝜃

0 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒
 where θ>0 is a parameter. What is the (1-α)100% 

confidence interval for θ? 

SOLUTION 

➢ Obtain the cumulative distribution function F(x;θ). 𝐹(𝑥; 𝜃) = ∫
1

𝜃
𝑑𝑥 =

𝑥

0

𝑥

𝜃
|𝑥

0
=

𝑥

𝜃
. 

➢ Taking pivotal quantity Q as 𝑄 = −2 ∑ 𝑙𝑛𝐹(𝑥; 𝜃) = −2 ∑ ln (
𝑥

𝜃
)𝑛

𝑖=1
𝑛
𝑖=1  

➢ = −𝟐 ∑ 𝒍𝒏𝒙𝒊 + 𝟐𝒏𝒍𝒏𝜽 = 𝟐𝒏𝒍𝒏𝜽 − 𝟐 ∑ 𝒍𝒏 𝒙𝒊
𝒏
𝒊=𝟏

𝒏
𝒊=𝟏  

➢ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑓𝑜𝑟 𝜃 𝑖𝑠; 

➢ 1−𝛼 = 𝑃[𝑃 [𝑥𝛼

2
,2𝑛

2 ≤ 𝑄 ≤ 𝑥
1−

𝛼

2
,2𝑛

2 ] = 𝑃[𝑥𝛼

2
,2𝑛

2 ≤ 2𝑛𝑙𝑛𝜃 − 2 ∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1 ≤

𝑥
1−

𝛼

2
,2𝑛

2 ] 

➢ = 𝑷[𝑥𝛼

2
,2𝑛

2 + 2 ∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1 ≤ 2𝑛𝑙𝑛𝜃 ≤ 𝑥

1−
𝛼

2
,2𝑛

2 + 𝟐 ∑ 𝒍𝒏𝒙𝒊
𝒏
𝒊=𝟏 ] 

➢ = 𝑷[
1

2𝑛
(𝑥𝛼

2
,2𝑛

2 + 2 ∑ 𝑙𝑛𝑥𝑖)𝑛
𝑖=1 ≤  𝑙𝑛𝜃 ≤

1

2𝑛
( 𝑥

1−
𝛼

2
,2𝑛

2 + 𝟐 ∑ 𝒍𝒏𝒙𝒊)
𝒏
𝒊=𝟏 ] 

➢ =𝑷[𝒆
[

1

2𝑛
(𝑥𝛼

2
,2𝑛

2 +2 ∑ 𝑙𝑛𝑥𝑖)𝑛
𝑖=1

≤ 𝜽 ≤ 𝒆
[

1

2𝑛
(𝑥

1−
𝛼
2

,2𝑛

2 +2 ∑ 𝑙𝑛𝑥𝑖)𝑛
𝑖=1

] 

The confidence interval is [𝒆
[

1

2𝑛
(𝑥𝛼

2
,2𝑛

2 +2 ∑ 𝑙𝑛𝑥𝑖)𝑛
𝑖=1

, 𝒆
[

1

2𝑛
(𝑥

1−
𝛼
2

,2𝑛

2 +2 ∑ 𝑙𝑛𝑥𝑖)𝑛
𝑖=1

] 

EXAMPLE II 

If x1,x2,…,xn is a random sample from a distribution with pdf 𝑓(𝑥; 𝜃) =

{
1

𝜃
𝑒

−𝑥

𝜃 , 0 < 𝑥 < ∞

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 where θ> 0 is a parameter. What is the (1-α)100% confidence 

interval for θ? 

SOLUTION 

• F(x; θ) = ∫
1

θ
e

−x

θ dx =
1

θ
∫ e

−x

θ dx =
1

θ
[−θe

−x

θ ] x
0

=  −e
−x

θ |x
0

=  −e
−x

θ + e0 =
x

0

x

0

1 − e
−x

θ  
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• taking Q = −2∑ ln(1 − 𝐹(𝑥; 𝜃)) = −2 ∑ ln (1 − (1 − 𝑒
−𝑥

𝜃 )) =𝑛
𝑖=1

𝑛
𝑖=1

−2 ∑ 𝑙𝑛𝑒
−𝑥

𝜃 =
2

𝜃
∑ 𝑥𝑖𝑙𝑛𝑒 =  

2

𝜃
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1  

• confidence interval for θ; 1 − 𝛼 = 𝑝 [𝑥𝛼

2
,2𝑛

2 ≤ 𝑄 ≤ 𝑥
1−

𝛼

2
,2𝑛

2 ] 

• = 𝑃 [𝑥𝛼

2
,2𝑛

2 ≤
2

𝜃
∑ 𝑥𝑖 ≤ 𝑥

1−
𝛼

2
,2𝑛

2𝑛
𝑖=1 ] = 𝑃[

2 ∑ 𝑥𝑛
𝑖=1

𝑥
1−

𝛼
2

,2𝑛

2 ≤ 𝜃 ≤
2 ∑ 𝑥𝑛

𝑖=1

𝑥𝛼
2

,2𝑛

2 ] 

Therefore; confidence interval is [
2 ∑ 𝑥𝑛

𝑖=1

𝑥
1−

𝛼
2

,2𝑛

2 ,
2 ∑ 𝑥𝑛

𝑖=1

𝑥𝛼
2

,2𝑛

2 ]  

TRY: (i) for the pdf 𝑓(𝑥; 𝜃) = {𝜃𝑥𝜃−1, 0 < 𝑥 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  where θ> 0 is an unknown 

parameter. What is the (1-α)100% confidence interval for θ? 

(ii) using ∑ 𝑙𝑛𝑥𝑖 = −0.7567,49
𝑖=1  determine 90% confidence interval for θ. 
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CHAPTER THREE 

3.0  EVALUATING THE GOODNESS OF ESTIMATORS USING THE PROPERTIES OF 

ESTIMATORS 

The properties of unbiasedness, consistency, efficiency, relative efficiency, 

uniform minimum variance unbiased estimator and sufficiency shall be 

considered. 

3.1UNBIASEDNESS 

An estimator 𝜃is unbiased for the population parameter 𝜃 if its expected value is 

equal to the unknown population parameter. That is; 𝐸(𝜃̂) = 𝜃. 

EXAMPLE I 

Let x1,x2,..,xn be a random sample from a population with mean µ and variance 

δ2>0. Is the sample variance s2 an unbiased estimator for the population variance 

δ2? 

SOLUTION 

➢ Required to show that E(s2)=δ2. 

➢ Given 𝑆2 =
1

𝑛−1
∑(𝑥 − 𝑥̅)2 take expectations, 𝐸(𝑆)2 = 𝐸(

1

𝑛−1
∑(𝑥 − 𝑥̅)2) 

➢ =
1

𝑛−1
𝐸[∑(𝑥2 − 2𝑥𝑥̅ + 𝑥̅2)] =

1

𝑛−1
𝐸[∑ 𝑥2 − 𝑛𝑥̅2] =

1

𝑛−1
[∑ 𝐸(𝑥2) −

𝑛𝐸(𝑥̅2)] … … … . (𝑎) 

➢ But  𝐸(𝑥̅) = 𝐸 [
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
] =

1

𝑛
∑ 𝐸(𝑥𝑖) =

1

𝑛
∑ 𝜇 =

1

𝑛
∗ 𝑛𝜇 = 𝜇............(b) 

➢ And 𝑉(𝑥̅) = 𝑣 [
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
] =

1

𝑛2
∑ 𝑣(𝑥𝑖) =

1

𝑛2
∑ 𝛿2 =

𝑛𝛿2

𝑛2
=

𝛿2

𝑛
………….(c) 

➢ From 𝑉(𝑥̅) = 𝐸(𝑥̅2) − (𝐸(𝑥̅))2)𝑎𝑛𝑑 𝑡𝑎𝑘𝑖𝑛𝑔 𝐸(𝑥̅)2 = 𝑣(𝑥̅) +

(𝐸(𝑥̅2)), 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 (𝑏)𝑎𝑛𝑑 (𝑐)  

➢ 𝐸(𝑥̅)2 =
𝛿2

𝑛
+ 𝜇2 … … … … … … … (𝑑)𝑎𝑛𝑑 𝐸(𝑥2) = 𝑣(𝑥) + (𝐸(𝑥))2 = 𝛿2 +

𝜇2 

➢ 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑎) 
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➢ 𝐸(𝑆2) =
1

𝑛−1
[∑ 𝐸(𝑥2) − 𝑛𝐸(𝑥̅2)] =

1

𝑛−1
[𝑛(𝛿2 + 𝜇2) − 𝑛 (

𝛿2

𝑛
+ 𝜇2)] =

1

𝑛−1
[(𝑛 − 1)𝛿2] = 𝛿2. 

Therefore,  S2 is an unbiased estimator for the population parameter δ2. 

 

EXAMPLE II 

Let x1,x2,x3 be a random sample of size 3 from a population with mean µ and 

variance δ2>0. If the statistics 𝑥̅  𝑎𝑛𝑑 𝑦 𝑤ℎ𝑒𝑟𝑒 𝑦 =
𝑥1+2𝑥2+3𝑥3

6
 are two 

estimators,  are the estimators 𝑥̅ 𝑎𝑛𝑑 𝑦 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝜇? 

SOLUTION 

➢ Required to show E(𝑥̅) = 𝜇 𝑎𝑛𝑑 𝐸(𝑦) = 𝜇 

For 𝑥̅ 

➢ 𝑥̅ =
𝑥1+𝑥2+𝑥3

3
, take expectations 𝐸(𝑥̅) = 𝐸 [

𝑥1+𝑥2+𝑥3

3
] =

1

3
𝐸(𝑥1 + 𝑥2 +

𝑥3) 

➢ =
1

3
𝐸[∑ 𝑥𝑖] =

1

3
∑ 𝐸(𝑥𝑖) =

1

3
∑ 𝜇 =

1

3
∗ 3𝜇 = 𝜇. 

➢ 𝐸(𝑥̅) = 𝜇, 𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑥̅ 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝜇. 

       For y 

➢ 𝑦 =
𝑥1+2𝑥2+3𝑥3

6
, 𝑡𝑎𝑘𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝐸(𝑦) = 𝐸 [

𝑥1+2𝑥2+3𝑥3

6
] 

➢ =
1

6
𝐸(𝑥1 + 2𝑥2 + 3𝑥3) 

➢ =
1

6
(𝐸(𝑥1) + 2𝐸(𝑥2) + 3𝐸(𝑥3) =

1

6
(𝜇 + 2𝜇 + 3𝜇) = 𝜇 

➢ 𝐸(𝑦) = 𝜇, 𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑𝑛𝑒𝑠𝑠. 
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TRY:  let x1,x2,…,xn be a random sample of size n from a distribution with unknown 

mean −∞ < 𝜇 < ∞ 𝑎𝑛𝑑 unknown variance δ2>0. Show that the statistics 

𝑥 ̅ 𝑎𝑛𝑑 𝑦 =
𝑥1+2𝑥2+⋯+𝑛𝑥𝑛

𝑛(𝑛+1)

2

 𝑎𝑟𝑒 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 𝑜𝑓 𝜇. 

3.2 RELATIVELY EFFICIENT ESTIMATOR 

If an estimator is unbiased and has smaller variance compared to another, then it 

is more efficient. Let 𝜃1 𝑎𝑛𝑑 𝜃2 be two unbiased estimators of 𝜃, the estimator 𝜃1 

is said to be more efficient than 𝜃2 if variance (𝜃1) is less than variance (𝜃2). 

The ratio 𝜂 given by η(𝜃1, 𝜃2) =
𝑣𝑎𝑟(𝜃̂2)

𝑣𝑎𝑟(𝜃̂1)
 is the relative efficiency of 

𝜃1 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜃2. 

EXAMPLE 

Let x1,x2 and x3 be a random sample of size 3 from a population with mean µ and 

variance δ2>0. If the statistics 𝑥 ̅ 𝑎𝑛𝑑 𝑦 =
𝑥1+2𝑥2+3𝑥3

6
 are two unbiased estimators 

of the population mean µ. Which of the statistics is more efficient and what is the 

relative efficiency of 𝑥̅ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑦? 

SOLUTION 

➢ Required to determine and compare the variances. 

Variance for 𝑥̅ 

➢ 𝑥̅ =
𝑥1+𝑥2+𝑥3

3
, 𝑡𝑎𝑘𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑣(𝑥̅) = 𝑣 [

𝑥1+𝑥2+𝑥3

3
] =

1

9
𝑣(𝑥1 + 𝑥2 + 𝑥3) =

1

9
[𝑣(𝑥1) + 𝑣(𝑥2) + 𝑣(𝑥3)] =

1

9
[𝛿2 + 𝛿2 + 𝛿2] =

1

9
∗ 3𝛿2 =

𝛿

3
 

Variance for y 

➢ 𝑦 =
𝑥1+2𝑥2+3𝑥3

6
, take variances 𝑣(𝑦) = 𝑣 [

𝑥1+2𝑥2+3𝑥3

6
] 

➢ =
1

36
[𝑣(𝑥1) + 4𝑣(𝑥2) + 9𝑣(𝑥3)] =

1

36
[𝛿2 + 4𝛿2 + 9𝛿2] =

14𝛿2

36
 

Compare the variances; v(𝑥̅)< v(y). Therefore 𝑥̅ is more efficient. 
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Relative efficiency of 𝑥 ̅𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑦. 

➢ R.e = η(𝑥̅, 𝑦) =
𝑣(𝑦)

𝑣(𝑥̅)
=

14𝛿2

36

𝛿2

3

= 7/6. 

 

TRY:  let x1,x2,x3 be a random sample of size 3 from a population with pdf 

𝑓(𝑥; 𝜆) = {
𝜆𝑥𝑒−𝜆

𝑥!
, 𝑥 = 0,1,2, . . , ∞

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
. Are the estimators 𝜆̂1 =

1

4
(𝑥1 + 2𝑥2 + 𝑥3) and 

𝜆̂2 =
1

9
(4𝑥1 + 3𝑥2 + 2𝑥3) unbiased? Which is more efficient and what is the 

relative efficiency of 𝜆2  ̂ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜆1̂ ? 

3.3 UNIFORM MINIMUM VARIANCE UNBIASED ESTIMATOR (UMVUE) , 

EFFICIENCY AND INFORMATION 

Definition: an unbiased estimator 𝜃 of θ is said to be a uniform minimum variance 

unbiased estimator of θ if it minimizes the variance (𝜃) given by E(𝜃̂ − 𝜃)2. 

The UMVUE can be obtained using Cramer Rao lower bound or fisher information 

inequality. For a random sample 𝑥 = (𝑥1, 𝑥2, . . , 𝑥𝑛) with pdf f(x;θ) and a 

likelihood function L(θ) a differentiable function of θ, the Cramer Rao lower 

bound is 𝑣(𝜃̂) ≥
−1

𝐸[
𝑑2𝑙𝑛𝐿(𝜃)

𝑑𝜃2 ]
. 

Definition:  let x1,x2,..,xn be a random sample of size n from a population x with 

pdf f(x;θ) where θ is a parameter. If 𝜃 is an unbiased estimator of θ and  (𝜃) =
−1

𝐸[
𝑑2𝑙𝑛𝐿(𝜃)

𝑑𝜃2 ]
 , then 𝜃 is a UMVUE of θ. 

Definition: an estimator 𝜃 is called an efficient estimator if it satisfies the cramer 

Rao lower bound and every efficient estimator is a uniform minimum variance 

unbiased estimator. 
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Let Y be an unbiased statistic from a random sample x for an unknown population 

parameter θ in a family of exponential pdfs f(x;θ). Then Y is said to be an efficient 

statistic for θ iff the variance obeys the Cramer Rao inequality given by  𝛿𝑦
2 ≥

1

𝐸[
𝑑2𝑙𝑛𝐿(𝜃)

𝑑𝜃2 ]
   𝑂𝑅  𝛿𝑦

2 ≥
1

𝑛∗𝐸[
𝑑𝑙𝑛𝑓(𝑥;𝜃)2

𝑑𝜃

 

Definition: Fisher’s information in xi (𝐼𝑥𝑖
(𝜃))is defined as the expected value of 

the second derivative of the log or log likelihood function, that is (𝐼𝑥𝑖
(𝜃) =

−𝐸[
𝑑2𝑙𝑛𝑓(𝑥;𝜃)

𝑑𝜃2
]. For a random sample 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛, the information in the 

sample  is sample size multiplied by the information in the first random variable, 

that is 𝐼𝑥(𝜃) = 𝑛 ∗ 𝐼𝑥𝑖
(𝜃) 

EXAMPLE I 

Given the pdf 𝑓(𝑥; 𝜃) = 𝜃𝑥𝜃−1, 0 < 𝑥 < 1 𝑎𝑛𝑑 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒. determine (i) 

information in the sample (ii) the cramer rao lower bound. 

SOLUTION 

(i) Information in a sample 𝐼𝑥(𝜃) = 𝑛 ∗ 𝐼𝑥𝑖
(𝜃) where 𝐼𝑥𝑖

(𝜃) =

−𝐸[
𝑑2𝑙𝑛𝑓(𝑥;𝜃)

𝑑𝜃2
 

➢ Take logs; 𝑙𝑛𝑓(𝑥; 𝜃) = 𝑙𝑛𝜃 + 𝜃𝑙𝑛𝑥 − 𝑙𝑛𝑥 

➢ Obtain the score (differentiate with respect to θ); 
𝑑𝑙𝑛𝑓(𝑥;𝜃)

𝑑𝜃
=

1

𝜃
+ 𝑙𝑛𝑥 

➢ Second derivative: 
𝑑2𝑙𝑛𝑓(𝑥;𝜃)

𝑑𝜃2
=

−1

𝜃2
 

➢ 𝐼𝑥𝑖
(𝜃) = −𝐸 [

𝑑2𝑙𝑛𝑓(𝑥;𝜃)

𝑑𝜃2
] = −𝐸 [

−1

𝜃2
] =

1

𝜃2
 

➢ 𝐼𝑥(𝜃) = 𝑛 ∗ 𝐼𝑥𝑖
(𝜃) = 𝑛 ∗

1

𝜃2
=

𝑛

𝜃2
 

(ii) Cramer rao lower bound is 𝑣(𝜃) ≥
−1

𝐸[
𝑑2𝑙𝑛𝐿(𝜃)

𝑑𝜃2 ]
𝑜𝑟 𝑣(𝜃) ≥

−1

𝑛∗𝐸[
𝑑2𝑙𝑛𝑓(𝑥;𝜃)

𝑑𝜃2 ]
 

➢ 𝑣(𝜃) ≥
−1

𝑛∗𝐸[−
1

𝜃2]
=

1
𝑛

𝜃2

=
𝜃2

𝑛
. 

EXAMPLE II 

Let x1,x2,..,xn be a random sample of size n from a distribution with pdf  
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𝑓((𝑥; 𝜃) = {3𝜃𝑥2𝑒−𝜃𝑥3
, 0 < 𝑥 < ∞

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
. What is the Cramer rao lower bound for the 

variance of the unbiased estimator of the parameter θ? 

SOLUTION 

The cramer rao lower bound is given by 𝑣(𝜃) ≥
−1

𝐸[
𝑑2𝑙𝑛𝐿(𝜃)

𝑑𝜃2 ]
 

➢ Determine the likelihood function  𝐿(𝜃) = 𝛱𝑓(𝑥; 𝜃) = 𝛱3𝜃𝑥2𝑒−𝜃𝑥3
=

𝜃𝑛 ∑ 3𝑥2𝑒−𝜃 ∑ 𝑥3
 

➢ Introduce logs ; 𝑙𝑛𝐿(𝜃) = 𝑛𝑙𝑛𝜃 + ∑ 𝑙𝑛3𝑥2 − 𝜃 ∑ 𝑥3 

➢ Differentiate with respect to 𝜃; 
𝑑𝑙𝑛𝐿(𝜃)

𝑑𝜃
=

𝑛

𝜃
− ∑ 𝑥3 

➢ Obtain second derivative; 
𝑑2 ln 𝐿(𝜃)

𝑑𝜃2
=

−𝑛

𝜃2
 

➢ 𝑣(𝜃) ≥
−1

𝐸[
𝑑2𝑙𝑛𝐿(𝜃)

𝑑𝜃2 ]
=

1

𝐸[
𝑛

𝜃2]
=

𝜃2

𝑛
 

TRY: Let x1,x2,..,xn be a random sample from a normal population with unknown 

mean µ and known variance δ2>0. What is the MLE for µ? Is this MLE an efficient 

estimator for µ? 

3.4 SUFFICIENT STATISTICS  

Let 𝒙~𝒇(𝒙; 𝜽) be a population and let x1,x2,…,xn be a random sample of size n 

from this population x. An estimator 𝜃  of the parameter θ is said to be a 

sufficient statistic of θ if the conditional distribution of the sample given the 

estimator 𝜃 does not depend on the parameter θ. That is;  

𝑓(𝑥1, 𝑥2, . . , 𝑥𝑛|𝑌 = 𝑦 ) =
𝑓(𝑥1,𝑥2,…,𝑥𝑛) 𝑎𝑛𝑑 𝑓(𝑌=𝑦) 

𝑓(𝑌=𝑦)
  does not depend on y. 

EXAMPLE I 

If x1,x2,…,xn is a random sample from a distribution with pdf  

𝑓(𝑥; 𝜃) = {
𝜃𝑥(1 − 𝜃)1−𝑥, 𝑥 = 0,1.

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 where 0 < θ <1. Show that 𝑌 = ∑ 𝑥𝑖 is a 

sufficient statistic for θ. 
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SOLUTION 

Using conditional distribution ; 𝑓(𝑥1, 𝑥2, . . , 𝑥𝑛|𝑌 = 𝑦 ) =
𝑓(𝑥1,𝑥2,…,𝑥𝑛) 𝑎𝑛𝑑 𝑓(𝑌=𝑦) 

𝑓(𝑌=𝑦)
   

• Where 𝑓(𝑥1, 𝑥2, . . , 𝑥𝑛|𝑌 = 𝑦 ) =
𝛱𝑓(𝑥𝑖;𝜃) 

𝑓(𝑌=𝑦)
  and 𝑌 = ∑ 𝑥𝑖 is a Bernoulli pdf 

given as 𝑓(𝑦) = (𝑛
𝑦

) 𝜃𝑦(1 − 𝜃)𝑛−𝑦 

• 
𝛱𝑓(𝑥𝑖;𝜃) 

𝑓(𝑌=𝑦)
=

𝛱𝜃𝑥(1−𝜃)1−𝑥

(𝑛
𝑦)𝜃𝑦(1−𝜃)𝑛−𝑦

=
𝜃∑ 𝑥𝑖(1−𝜃)𝑛−∑ 𝑥𝑖

(𝑛
𝑦)𝜃𝑦(1−𝜃)𝑛−𝑦

  but ∑ 𝑥𝑖 = 𝑦 

• 
𝜃𝑦(1−𝜃)𝑛−𝑦

(𝑛
𝑦)𝜃𝑦(1−𝜃)𝑛−𝑦

=
1

(𝑛
𝑦)

, the conditional density of the sample given the statistic 

Y is independent of the parameter θ. Therefore a sufficient statistic. 

TRY: given the pdf 𝑓(𝑥; 𝜃) = 𝑒−(𝑥−𝜃), 0 < 𝑥 < ∞ 𝑎𝑛𝑑 0 <  𝜃 < ∞ 𝑎𝑛𝑑 𝑓(𝑦) =

𝑛𝑒−𝑛(𝑦−𝜃), 0 < 𝑦 < ∞.  show that y is a sufficient statistic for θ. 

3.41 FACTORISATION THEOREM OF NEYMAN 

Let x1,x2,…,xn denote a random sample with pdf f(x;θ), which depends on the 

population parameter θ. The estimator 𝜃 is sufficient for θ iff the likelihood 

function can be factorised into two k1 and k2 where k1 has θ and k2 does not 

depend on θ. that is; 𝑘1(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃)𝑘2(𝑥1, 𝑥2, … , 𝑥𝑛). 

EXAMPLE 

Let x1,x2,…,xn be a random sample from a distribution with pdf  

𝑓(𝑥; 𝜆) = { 𝜆𝑥𝑒−𝜆/𝑥!
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 𝑥 = 0,1,2, … , ∞. Where  λ > 0 is a parameter. Show that 

the estimator is a sufficient estimator of the parameter λ. 

SOLUTION 

Using the factorization theorem, determine the likelihood function and factorise 

the function into two. 

➢ 𝐿(𝜆) =
𝛱 𝑛

𝑖=1𝜆𝑥𝑒−𝜆

𝑥!
=

𝜆∑ 𝑥𝑖𝑒−𝑛𝜆

𝛱𝑥!
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➢ 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒 𝑡ℎ𝑖𝑠; (𝜆∑ 𝑥𝑖𝑒−𝑛𝜆)(
1

𝛱𝑥!
) 

➢ = 𝑘1(𝑥; 𝜆)𝑘2(𝑥𝑖). Therefore it is a sufficient estimator. 

TRY: let x1,x2,…,xn  be a random sample from a Bernoulli population having the 

density function 𝑓(𝑥; 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 , 𝑥 = 0,1 𝑎𝑛𝑑 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒. obtain the 

sufficient statistic for a Bernoulli. 

 

 

3.41 FACTORISATION THEOREM OF NEYMAN  

Let x1,x2,…,xn denote a random sample with pdf f(x;θ), which depends on the 

population parameter θ. The estimator 𝜃 is sufficient for θ iff the likelihood 

function can be factorised into two k1 and k2 where k1 has θ and k2 does not 

depend on θ. that is; 𝑘1(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃)𝑘2(𝑥1, 𝑥2, … , 𝑥𝑛). 

EXAMPLE 

Let x1,x2,…,xn be a random sample from a distribution with pdf  

𝑓(𝑥; 𝜆) = { 𝜆𝑥𝑒−𝜆/𝑥!
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 𝑥 = 0,1,2, … , ∞. Where  λ > 0 is a parameter. Show that 

the estimator is a sufficient estimator of the parameter λ. 

SOLUTION 

Using the factorization theorem, determine the likelihood function and factorise 

the function into two. 

➢ 𝐿(𝜆) =
𝛱 𝑛

𝑖=1𝜆𝑥𝑒−𝜆

𝑥!
=

𝜆∑ 𝑥𝑖𝑒−𝑛𝜆

𝛱𝑥!
 

➢ 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒 𝑡ℎ𝑖𝑠; (𝜆∑ 𝑥𝑖𝑒−𝑛𝜆)(
1

𝛱𝑥!
) 

➢ = 𝑘1(𝑥; 𝜆)𝑘2(𝑥𝑖). Therefore it is a sufficient estimator. 
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TRY: let x1,x2,…,xn  be a random sample from a Bernoulli population having the 

density function 𝑓(𝑥; 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 , 𝑥 = 0,1 𝑎𝑛𝑑 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒. obtain the 

sufficient statistic for a Bernoulli. 

 

3.5 CONSISTENT ESTIMATOR 

Let x1,x2,…,xn be a random sample from a population X with pdf f(x;θ). Let 𝜃 be an 

estimator of θ based on the sample of size n denoted as (𝜃𝑛).  A sequence of 

estimators   (𝜃̂𝑛) of θ is said to be consistent for θ if and only if the sequence  

(𝜃𝑛) converges in probability to θ ,that is for any 𝜖 > 0 

lim
𝑛→∞

𝑃[|𝜃𝑛 − 𝜃| ≥∈] = 0.  

Consistency is a large sample property of an estimator. 

To show that a sequence of estimators is consistent, we verify the limits below; 

➢ lim
𝑛→∞

𝑣𝑎𝑟(𝜃𝑛) = 0 

➢ lim
𝑛→∞

𝐵(𝜃𝑛, 𝜃) = 0 

 

 

 

CHAPTER FOUR 

4.0 HYPOTHESIS TESTING 

A hypothesis is an assertion about the underlying population. The hypothesis to 

be tested is the null hypothesis (H0) and its negative is the alternative hypothesis 

(HA). 

A hypothesis test is an ordered sequence (x1,x2,…,xn ; Ho,HA; c) where x1,x2,…,xn is a 

random sample from a population x with the pdf f(x;θ), H0 and HA are hypotheses 
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concerning the parameter θ in f(x;θ) and c is the critical region. Or it is a rule that 

tells us for which sample values we should decide to accept H0 as true and for 

which sample values we should reject H0 and accept HA as true.   

DEFINITIONS 

➢ Sample space: space of all possible outcomes of a statistical experiment. 

➢ Parameter space: all possible values of the unknown parameters. 

➢ Simple hypothesis: is one that completely specifies the density function of 

the population e.g H0: µ=1. 

➢ Composite hypothesis: doesnot completely specify the population 

parameter e.g µ<1. 

➢ Critical region (c): is a subset of the sample space which is in accordance 

with the agreed test leading to rejection of the hypothesis under reference. 

➢ Size of the critical region is given as 𝑃[𝑥  ∈ 𝑐 𝐻0⁄ ] = 𝛼. 

➢ Power function of a test for testing H0 against HA is the probability of 

rejecting H0. That is; 𝑃 = 𝑝𝑟𝑜𝑏{𝑥𝜖𝑐}. 

➢ Power of a test 𝛱(𝜃𝐴) = 𝑝𝑟𝑜𝑏{𝑥𝜖𝑐 𝐻𝐴⁄ } and is yielded by particular values 

of θ as per hypothesis. 

➢ Level of significance for testing H0 versus HA is equivalent to the size of the 

critical region or is the maximum value of the power function assuming H0 

is true. That is; 𝑃[𝑥  ∈ 𝑐 𝐻0⁄ ] = 𝛼. 

➢ Type I error is as a result of rejecting H0 when it is true. It is given as α. 

➢ Type II error is as a result of accepting H0 when it is false. It is equal to 1 −

𝑝{𝑥𝜖 𝑐 𝐻𝐴⁄ }. 

 

 

4.1 NEYMAN-PEARSON LEMMA FOR THE BEST CRITICAL REGION 

Let x1,x2,…,xn be a random sample from population with pdf f[x;θ] and 

𝐿(𝜃; 𝑥1, . . , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖; 𝜃 )𝑖𝑠𝑛
𝑖=1  the likelihood function of the sample. Then any 

critical region C of the form 𝐶{(𝑥1, . . , 𝑥𝑛)
𝐿(𝜃0;𝑥1,…,𝑥𝑛)

𝐿(𝜃𝐴;𝑥1,….,𝑥𝑛)
⁄ ≤ 𝑘} for some constant 
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o<k<∞ is best critical region (or uniformly most powerful) of its size for testing 

𝐻0: 𝜃 = 𝜃0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: 𝜃 = 𝜃𝐴. 

Therefore, if L(θ0) is the likelihood function for the null hypothesis and L( θA ) is 

the likelihood of the alternative hypothesis;  𝑐 = {𝑥;
𝐿(𝜃0)

𝐿(𝜃𝐴)
≤ 𝑘}  is the best critical 

region. 

EXAMPLE1 

Suppose x has a pdf 𝑓(𝑥; 𝜃) = {(1 + 𝜃)𝑥𝜃 , 0 ≤ 𝑥 ≤ 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

. Based on a single observed 

value of x, find the best critical region given the hypothesis H0: θ=1 versus HA: θ=2. 

SOLUTION 

➢ By the Neyman –Pearson lemma 𝑐 = {𝑥;
𝐿(𝜃0)

𝐿(𝜃𝐴)
≤ 𝑘} 

➢ 𝐿(𝑥; 𝜃) = 𝛱𝑓(𝑥; 𝜃) = (1 + 𝜃)𝑥𝜃 

➢ 𝑓𝑜𝑟 𝐻0: 𝜃 = 1; 𝐿(𝜃0) = 2𝑥 𝑎𝑛𝑑 𝑓𝑜𝑟 𝐻𝐴: 𝜃 = 2; 𝐿(𝜃𝐴) = 3𝑥2 

➢ 
𝐿(𝜃0)

𝐿(𝜃𝐴)
=

2𝑥

3𝑥2
=

2

3𝑥
 

➢ Introduce k,  
2

3𝑥
≤ 𝑘, 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑥; 𝑥 ≥

2𝑘

3
 

➢ Therefore; c={𝑥; 𝑥 ≥
2𝑘

3
} 𝑖𝑠 𝑡ℎ𝑒 𝐵𝐶𝑅. therefore, reject H0 if  𝑥 ≥

2𝑘

3
. 

EXAMPLE 2 

Let x1, x2, x3 denote 3 independent observations from a pdf 𝑓(𝑥; 𝜃) =

{(1 + 𝜃)𝑥𝜃 , 0 ≤ 𝑥 ≤ 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

. determine the best critical region given the hypothesis Ho: 

θ=1 and HA: θ=2. 

SOLUTION 

➢ By the Neyman –Pearson lemma 𝑐 = {𝑥;
𝐿(𝜃0)

𝐿(𝜃𝐴)
≤ 𝑘} 

➢ 𝐿(𝑥; 𝜃) = ∏ 𝑓(𝑥; 𝜃)3
𝑖=1 = ∏ (1 + 𝜃)𝑥𝜃 = (1 + 𝜃)3 ∏ 𝑥𝑖

𝜃3
𝑖=1

3
𝑖=1  

➢ 𝑙(𝜃0)𝑓𝑜𝑟 𝜃 = 1𝑖𝑠 (1 + 1)3 ∏ 𝑥𝑖
13

𝑖=1 = 23𝑥1𝑥2𝑥3 = 8𝑥1𝑥2𝑥3 

➢ 𝑓𝑜𝑟 𝜃 = 2, 𝑙(𝜃𝐴) = (1 + 2)3 ∏ 𝑥𝑖
2 = 27𝑥1

2𝑥2
2𝑥3

23
𝑖=1  
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➢ 𝑟𝑎𝑡𝑖𝑜 
𝐿(𝜃0)

𝐿(𝜃𝐴)
=

8𝑥1𝑥2𝑥3

27𝑥1
2𝑥2

2𝑥3
2 =

8

27𝑥1𝑥2𝑥3
 

➢ 𝑏𝑐𝑟 𝑐 = {𝑥;
8

27𝑥1𝑥2𝑥3
≤ 𝑘} 

➢ 𝑐 = {𝑥;
1

𝑥1𝑥2𝑥3
≤

27

8
𝑘} 

➢ 𝑐 = {𝑥; 𝑥1𝑥2𝑥3 ≥
8

27𝑘
} as the best critical region. 

TRY: given a random variable x from a population with a normal distribution 

with mean θ and variance one. Determine the best critical region given the 

hypothesis Ho : θ=0  and HA: θ=1for a sample of size n. 

EXAMPLE 

Obtain the BCR given a random sample of size n from a population with pdf 

f(x;θ) and the hypotheses 𝐻0:
𝑒−1

𝑥!
, 𝑥 = 0,1,2,3 … 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: (

1

2
)𝑥+1, x= 0,1,2…. 

SOLUTION 

➢ By the Neyman –Pearson lemma 𝑐 = {𝑥;
𝐿(𝜃0)

𝐿(𝜃𝐴)
≤ 𝑘} 

➢ 𝐿(𝜃0) = ∏
𝑒−1

𝑥!
=

𝑒−1

𝑥!

𝑒−𝑛

∏ 𝑥!𝑛
𝑖=1

𝑛
𝑖=1  

➢ 𝑙(𝜃𝐴) = ∏ (
1

2
)𝑥+1 = (

1

2
)

𝑛
(

1

2
)∑ 𝑥𝑖𝑛

𝑖=1  

➢ 𝑟𝑎𝑡𝑖𝑜 
𝑙(𝜃0)

𝑙(𝜃𝐴)
=

𝑒−1

𝑥!

𝑒−𝑛

∏ 𝑥!𝑛
𝑖=1

(
1

2
)

𝑛
(

1

2
)∑ 𝑥𝑖

=
(2𝑒−1)𝑛2∑ 𝑥𝑖

∏ 𝑥𝑖!𝑛
𝑖=1

 

➢ 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒 𝑘 > 0,
(2𝑒−1)𝑛2∑ 𝑥𝑖

∏ 𝑥𝑖!𝑛
𝑖=1

≤ 𝑘 

➢ Taking logs on both sides, 𝑙𝑜𝑔
(2𝑒−1)𝑛2∑ 𝑥𝑖

∏ 𝑥𝑖!𝑛
𝑖=1

≤ 𝑙𝑜𝑔𝑘 

➢ ∑ 𝑥𝑖𝑙𝑜𝑔2 + 𝑛𝑙𝑜𝑔2𝑒−1 − 𝑙𝑜𝑔 ∏ 𝑥𝑖! ≤ 𝑙𝑜𝑔𝑘 = 𝑐𝑛
𝑖=1  

➢ Make x the subject 

➢ ∑ 𝑥𝑖𝑙𝑜𝑔2 − 𝑙𝑜𝑔 ∏ 𝑥𝑖! ≤ log 𝑘 − 𝑛𝑙𝑜𝑔2𝑒−1. 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑡ℎ𝑒 𝐵𝐶𝑅.𝑛
𝑖=1  

 

TRY 
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Given x1,x2,…..x12 is a random sample from a normal population with mean zero 

and variance δ2. What is the BCR given the hypotheses 𝐻0: 𝜎2 =

10 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: 𝜎2 = 5? 
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4.2 LIKELIHOOD RATIO TEST 

Definition: the likelihood ratio test for testing a simple null hypothesis H0 

:𝜃𝜖𝜃0 𝑣𝑒𝑟𝑠𝑢𝑠 the composite hypothesis HA:𝜃𝜖𝜃𝐴 based on a set of random 

sample data x1,x2,…,xn is defined as 𝑤(𝑥1, 𝑥2, … , 𝑥𝑛) =
𝐿(𝑥⏟;𝜃0)

𝐿(𝑥⏟;𝜃𝐴)
. 

A likelihood ratio test (LRT) is any test that has a critical region C (rejection region) 

of the form 𝑐 = {(𝑥1, 𝑥2, . . , 𝑥𝑛) 𝑤(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑘⁄ } where k is a number in the 

unit interval (0,1) and w(x1,…,xn) is the likelihood ratio test statistic. 

EXAMPLE 

Let x1, x2, x3 denote 3 independent observations from a pdf 𝑓(𝑥; 𝜃) =

{(1 + 𝜃)𝑥𝜃 , 0 ≤ 𝑥 ≤ 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

.  what is the form of the likelihood ratio test given the 

hypothesis Ho: θ=1 and HA: θ=2? 

SOLUTION 

From definition; 𝑐 =

{(𝑥1, 𝑥2, . . , 𝑥𝑛) 𝑤(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑘} = {(𝑥1, … , 𝑥𝑛)/
𝐿(𝜃0)

𝐿(𝜃𝐴)
≤ 𝑘}⁄  

➢ 𝐿(𝑥; 𝜃) = ∏ 𝑓(𝑥; 𝜃)3
𝑖=1 = ∏ (1 + 𝜃)𝑥𝜃 = (1 + 𝜃)3 ∏ 𝑥𝑖

𝜃3
𝑖=1

3
𝑖=1  

➢ 𝑙(𝜃0)𝑓𝑜𝑟 𝜃 = 1𝑖𝑠 (1 + 1)3 ∏ 𝑥𝑖
13

𝑖=1 = 23𝑥1𝑥2𝑥3 = 8𝑥1𝑥2𝑥3 

➢ 𝑓𝑜𝑟 𝜃 = 2, 𝑙(𝜃𝐴) = (1 + 2)3 ∏ 𝑥𝑖
2 = 27𝑥1

2𝑥2
2𝑥3

23
𝑖=1  

➢ 𝑟𝑎𝑡𝑖𝑜 
𝐿(𝜃0)

𝐿(𝜃𝐴)
=

8𝑥1𝑥2𝑥3

27𝑥1
2𝑥2

2𝑥3
2 =

8

27𝑥1𝑥2𝑥3
 

➢  𝑐 = {𝑥;
8

27𝑥1𝑥2𝑥3
≤ 𝑘} 

➢ 𝑐 = {𝑥;
1

𝑥1𝑥2𝑥3
≤

27

8
𝑘} 

➢ 𝑐 = {𝑥; 𝑥1𝑥2𝑥3 ≥
8

27𝑘
}, reject H0 if 𝑥1𝑥2𝑥3 ≥

8

27𝑘
. 
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CHAPTER FIVE 

5.0 NON-PARAMETRIC TESTS 

These are referred to as distribution free tests. They do not make an assumption 

about the distribution of the data, that is normality. These include; sign test, runs 

test, chi-square test, Kruskal wallis test, mann Whitney test etc. 

5.1 CHI-SQUARE TEST 

This can be used as a  goodness of fit test and as a test of independence.  The 

goodness of fit test is used to determine how well an observed set of data fits an 

expected set of data. The null hypothesis is that, there is no difference between 

the observed (f0) and the expected (fe) frequencies OR H0: good fit versus HA: poor 

fit  OR H0: not biased versus HA: biased 

The test statistic is the chi-square given as 𝑥2 = ∑
(𝑓0−𝑓𝑒)2

𝑓𝑒

𝑘
𝑖=1 , where fe=npi , n is 

the total number of observations , pi is the probability for each category and k are 

the number of categories. 

The critical region is 𝑥2 ≥ 𝑥∝,𝑘−1
2 . (i.e reject H0). 

EXAMPLE 

A gambler suspects that a normal die is biased. He throws the die 108 times and 

gets the following results; 

Number 1 2 3 4 5 6 
Frequency 25 18 15 20 22 8 

What decision would he make at 0.05 level of significance? 

SOLUTION 

➢ H0: not biased (p1= p2=…=pn =1/6)  versus HA: biased 

➢ L.o.s α = 0.05 

➢ C.r: 𝑥2 ≥ 𝑥∝,𝑘−1
2 = 𝑥2 ≥ 𝑥0.05,6−1

2 = 𝑥2 ≥ 11.07 

➢ 𝑥2 = ∑
(𝑓0−𝑓𝑒)2

𝑓𝑒

𝑘
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑓𝑒 = 𝑛𝑝𝑖 = 108 ∗

1

6
= 18 
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➢ Compute chi-square value 

F0 25 18 15 20 22 8 

fe 18 18 18 18 18 18 

(𝑓0 − 𝑓𝑒)2

𝑓𝑒
 

2.72 0.00 0.50 0.22 0.89 5.56 

 

𝑥2 = ∑
(𝑓0 − 𝑓𝑒)2

𝑓𝑒

𝑘

𝑖=1

= 9.89 

➢ Decision: fail to reject H0.  

EXAMPLE 

It is hypothesized that an experiment results in outcomes K, L,M and N with 

probabilities 1/5, 3/10, 1/10,2/5 respectively. Forty independent repetitions of 

the experiment have results as follows. 

Outcome K L M N 
Frequency 11 14 5 10 

If a chi-square goodness of fit test is used to test the above hypothesis at the 

0.01 significance level, then what is the value of the chi-square statistic and 

the decision reached? 

SOLUTION 

➢ H0: observed frequency = expected frequency  VERSUS HA: they differ  

➢ L.o.s is 0.01 

➢  C.r: 𝑥2 ≥ 𝑥∝,𝑘−1
2 = 𝑥2 ≥ 𝑥0.05,6−1

2 = 𝑥2 ≥ 11.07 

➢ C.r: 𝑥2 ≥ 𝑥∝,𝑘−1
2 = 𝑥2 ≥ 𝑥0.01,4−1

2 = 𝑥2 ≥ 11.35 

➢ 𝑥2 = ∑
(𝑓0−𝑓𝑒)2

𝑓𝑒

𝑘
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑓𝑒 = 𝑛𝑝𝑖 , n=40 

F0 11 14 5 10 
fe 8 12 4 16 

(𝑓0 − 𝑓𝑒)2

𝑓𝑒
 

1.125 0.333 0.25 2.25 
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𝑥2 = ∑
(𝑓0 − 𝑓𝑒)2

𝑓𝑒

𝑘

𝑖=1

= 3.958 

➢ Fail to reject H0.  

TRY:  the distribution of the number of deaths due to a rare disease in a 

certain year among cities was as follows; 

Deaths(x) 0 1 2 3 4 5 6 

No. of 
cities(f) 

93 70 26 8 2 0 1 

Test the goodness of fit of a poisson distribution to this data at 5% level of 

significance. [hint: degrees of freedom are k-2 since a parameter is 

estimated from the sample and the pdf of a poisson distribution(pi) is 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
  ] 

TRY:  six coins are tossed 64 times and the following number of heads 

were observed. 

Heads (x) 0 1 2 3 4 5 6 

frequency 1 9 10 25 12 5 2 

Test the goodness of fit for the data at 5% level of significance using a 

binomial distribution with pdf 𝑓(𝑥) = 𝑝𝑖 = (6
𝑥
)𝑝𝑥𝑞𝑛−𝑥.[hint estimate 𝑥̅ =

∑ 𝑓𝑖𝑥𝑖

∑ 𝑓𝑖
, 𝑠𝑖𝑛𝑐𝑒 𝑥̅ = 𝑛𝑝 𝑡ℎ𝑒𝑛, 𝑝 =

𝑥̅

𝑛
, 𝑑. 𝑜. 𝑓 = 𝑘 − 2.] 

NOTE: 

• If there are only 2 cells, the expected frequency in each cell should 

be greater or equal to five. 

• For more than 2 cells chi-square should not be applied if more than 

20% of the expected frequencies are less than 5. For this, combine 

the small cells into one category. 
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5.2 CONTINGENCY TABLE 

This is an array of data in rows and columns which are assumed to be 

independent of each other. 

Any statistical experimental data which can be presented in arrays of rows and 

columns is a contingency table. It used to test whether the categorical data given 

are independent of each other. The null hypothesis is that the variables are 

independent (no relationship) and the alternative is that they are dependent 

(related). 

It uses the chi-square distribution with [(r-1)(c-1)] as the degrees of freedom. The 

critical region is given as 𝑥2 ≥ 𝑥∝,(𝑐−1)(𝑟−1)
2  (reject H0) and the computed chi-

square value is given as 𝑥2 = ∑ ∑ (
(𝑂𝑖𝑗−𝐸𝑖𝑗)2

𝐸𝑖𝑗
) ,𝑐

𝑗=1
𝑟
𝑖=1  where Oij is the observed 

frequency and Eij is the expected frequency given as 𝐸𝑖𝑗 =
𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 𝑋 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙
. 

EXAMPLE: 

Given the data below for education level and social status, test whether there is a 

relationship between the two at 0.05 level of significance. 

Education Above average Average Below average Total 

College 18 12 10 40 
High school 17 15 13 45 

Primary 9 9 22 40 
Total 44 36 45 125 

SOLUTION 

➢ H0: independent Versus HA: dependent 

➢ L.o.s = 0.05 

➢ C.r 𝑥2 ≥ 𝑥∝,(𝑐−1)(𝑟−1)
2 = 𝑥2 ≥ 𝑥0.05,4

2 = 𝑥2 ≥ 9.488 

➢ Compute 𝑥2 = ∑ ∑ (
(𝑂𝑖𝑗−𝐸𝑖𝑗)2

𝐸𝑖𝑗
) ,𝑐

𝑗=1
𝑟
𝑖=1  
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Observed freq. (Oij) Expected freq. (Eij) 
(

(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗
) 

18 14.08 1.09 

17 15.84 0.09 
9 14.08 1.83 

12 11.52 0.02 
15 12.96 0.32 

9 11.52 0.55 

10 14.4 1.34 
13 16.2 0.63 

22 14.4 4.01 
 

➢ 𝑥2 = ∑ ∑ (
(𝑂𝑖𝑗−𝐸𝑖𝑗)2

𝐸𝑖𝑗
) = 9.88𝑐

𝑗=1
𝑟
𝑖=1  

➢ Decision: reject H0. They are dependent. 

5.3THE KRUSKAL -WALLIS TEST 

This is used for simultaneous comparisons of more than two independent 

populations. It is an alternative to the ANOVA test. It is used to test the hypothesis 

that k independent samples are from the same population where the actual values 

are replaced by ranks. 

All the samples are ranked as if they are coming from the same population. 

The test statistic is H which approximates to a chi-square distribution with (k-1) 

degrees of freedom, that is; 𝐻 ≈  𝑋∝,𝑘−1
2  .  where H is computed as, 𝐻 =

12

𝑁(𝑁+1)
[

(∑ 𝑅1)2

𝑛1
+ ⋯ +

(∑ 𝑅𝑖)2

𝑛𝑖
] − 3(𝑁 + 1). 

Where , 

N= sum of all the samples (n1+n2+…..) 

Ri is the sum of the ranks for each sample 

The critical region is 𝐻 ≥ 𝑋∝,𝑘−1
2 . 
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EXAMPLE 

Three varieties of wheat planted in 12 plots of land at random gave the following 

yields per acre; 

Variety A Rank A Variety B Rank B Variety C Rank C 

35 1 55 12 47 6 

38 2 48 7 43 4 

45 5 52 9 53 10 

40 3 54 4 50 8 

Sum ranks 11  39  28 

 Apply the Kruskal wallis test to decide whether there is a significant difference 

among the 3 varieties of wheat at 0,05 significance level. 

SOLUTION 

• H0: no difference Vs HA: they differ 

• L.o.s  is 0.05 

• C.r 𝐻 ≥ 𝑋∝,𝑘−1
2 =  𝐻 ≥ 𝑋0.05 ,3−1

2 = 𝐻 ≥ 5.99 

• Rank data 

• Compute 𝐻 =
12

𝑁(𝑁+1)
[

(∑ 𝑅1)2

𝑛1
+ ⋯ +

(∑ 𝑅𝑖)2

𝑛𝑖
] − 3(𝑁 + 1) =

12

12(12+1)
[

112

4
+

392

4
+

282

4
] − 3(12 + 1) = 7.654. 

• Reject H0. There is a difference in the varieties. 

TRY: a travel agency selected samples of hotels from three major chains and 

recorded the occupancy rate for each hotel on a specific date as below. The 

occupancy rate is the percentage of the total number of rooms that were occupied 

the previous night. 

Best Eastern Comfort Inn Quality Court 

58% 69% 72% 

57 67 80 

67 62 84 

63 69 94 

61 77 86 

64   
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 Do these data suggest any difference in the occupancy rates at 0.05 level of 

significance assuming that the occupancy percentages are not normally distributed? 

 

 

 

 


