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CHAPTER ONE 
1.0 WHAT IS ECONOMETRICS? 

Is concerned with the testing the theoretical propositions embodied in relations and 

with estimating the parameters involved. Econometrics is the science that 

combines economic theory with economic statistics and tries by mathematical and 

statistical methods to investigate the empirical support of the general law 

established by economic theory. 

It is a composition of economics, mathematics and statistics. Where economics is 

for developing a hypothesis, mathematics is for model building in a mathematical 

form and statistics deals with using statistical techniques to analyse the economic 

model, to estimate the unknown parameters of the model and using the estimates 

for statistical inference. 

Econometrics may be defined as the quantitative analysis of actual economic 

phenomena based on the concurrent development of theory and observation, 

related by appropriate methods of inference. 

 

1.1 OBJECTIVES/ GOALS OF ECONOMETRICS 

a) To judge the validity of economic theory. 

b) To supply the numerical estimates of the coefficients of the economic 

relationships that may be used for sound economic policies. 

c) To forecast the future values of the economic magnitude with a certain 

degree of probability. 

 

 

1.4 CATEGORIES OF ECONOMETRICS 

It is distinguished into two categories; 

i. Theoretical econometrics: deals with the development of the appropriate 

methods for measuring economic relationships described by econometric 

models. These methods may be classified into two groups; 

➢ Single equation techniques (simple regression analysis) which are 

applied to one relation at a time. 

➢ Simultaneous equation techniques (multiple regression) which are 

applied to all relationships of the model simultaneously. 

 

Theoretical econometrics is concerned with spelling out the assumptions of the 

above methods, their properties and what happens when one or more of the 

assumptions of the methods are not fulfilled. 



ii. Applied econometrics: describes the practical value of econometric research. 

It deals with the application of econometric techniques developed in 

theoretical econometrics to different fields of economic theory for its 

verification and forecasting. Applied econometrics makes it possible to 

obtain numerical results from studies that are of great importance to 

planners. 

 

  



I.3 METHODOLOGY OF ECONOMETRICS 
The traditional or classical methodology, which still dominates 
empirical research in economics and other social and behavioral 
sciences involves the  following steps: 
1. Statement of theory or hypothesis. 
2. Specification of the mathematical model of the theory 
3. Specification of the statistical, or econometric, model 
4. Obtaining the data 
5. Estimation of the parameters of the econometric model 
6. Hypothesis testing 
7. Forecasting or prediction 
8. Using the model for control or policy purposes. 
 
CHAPTER TWO 

2.0 ESTIMATION OF PARAMETERS USING LSE METHOD 

Using the simple regression model of the form 𝑦𝑖 = 𝛽𝑜 + 𝛽1𝑥𝑖 + 휀𝑖 where 𝛽𝑜 and 

β1 are the parameters to be estimated and 휀 is the error term. 

2.1 BASIC ASSUMPTIONS OF THE MODEL 

These are referred to as the basic classical assumptions and include; 

➢ Normality of the error term  

➢ Error term has zero mean, i.e E(휀𝑖)=0 

➢ Constant variance (homoscedasticity) i.e E(휀2)=δ2 

➢ Non-auto-regression i.e 𝐸(휀𝑖휀𝑗) = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗. 

➢ The regression model is linear in parameters  

➢ Zero covariance between the error term and the explanatory variable i,e  

E(Eixi)=0 

➢ Non-stochastic explanatory variable. The values of x are fixed in repeated 

samples. 



➢ The number of observations n must be greater than the number of 

parameters to be estimated. Alternatively, the number of observations n 

must be greater than the number of explanatory variables. 

➢ Variability in x values. The x values in a given sample must not all be the 

same. 

➢ The regression model is correctly specified. Alternatively, there is no 

specification bias or error in the model used in empirical analysis. 

➢ There is no perfect multicollinearity, that is there is no perfect linear 

relationship among the explanatory variables. 

2.2 THE SIGNIFICANCE OF THE STOCHASTIC DISTURBANCE TERM 

 

The disturbance term is a surrogate for all those variables that are omitted from the 

model but that collectively affect Y. The reasons are many. 

 

1. Vagueness of theory: The theory, if any, determining the behavior of Y may be, 

and often is, incomplete.  

 

2. Unavailability of data: Even if we know what some of the excluded variables 

are and therefore consider a multiple regression rather than a simple regression, we 

may not have quantitative information about these.  

 

3. Core variables versus peripheral variables: Assume in a consumption income 

example that besides income X1, the number of children per family X2, sex X3, 

religion X4, education X5, and geographical region X6 also affect consumption 

expenditure. But it is quite possible that the joint influence of all or some of these 

variables may be so small and at best nonsystematic or random that as a practical 

matter and for cost considerations it does not pay to introduce them into the model 

explicitly. One hopes that their combined effect can be treated as a random 

variable. 

 

4. Intrinsic randomness in human behavior: Even if we succeed in introducing all 

the relevant variables into the model, there is bound to be some“intrinsic” 

randomness in individual Y’s that cannot be explained no matter how hard we try. 

The disturbances, may very well reflect this intrinsic randomness. 

 



5. Poor proxy variables: Although the classical regression model assumes that the 

variables Y and X are measured accurately, in practice the data may be plagued by 

errors of measurement. 

 

6. Principle of parsimony: we would like to keep our regression model as simple as 

possible. If we can explain the behavior of Y “substantially” with two or three 

explanatory variables and if our theory is not strong enough to suggest what other 

variables might be included, why introduce more variables? Let the error term 

represent all other variables. Of course, we should not exclude relevant and 

important variables just to keep the regression model simple. 

 

7. Wrong functional form: Even if we have theoretically correct variables 

explaining a phenomenon and even if we can obtain data on these variables, very 

often we do not know the form of the functional relationship between the 

regressand and the regressors. Is consumption expenditure a linear (invariable) 

function of income or a nonlinear (invariable) function? If it is the former, Yi = β1 

+ B2Xi + Ei is the proper functional relationship between Y and X, but if it is the 

latter, Yi = β1 + β2Xi + β3X2i+Ei may be the correct functional form. In two-

variable models the functional form of the relationship can often be judged from 

the scatter gram. But in a multiple regression model, it is not easy to determine the 

appropriate functional form, for graphically we cannot visualize scattergrams in 

multiple dimensions. 

 

Using LSE method; 

• From the model , make the error term the subject 

• Form sums of squares 

• Minimize the sums of squares (differentiate with respect to the parameters) 

and equate the results to zero. 

• Form normal regression equations and solve for the parameters using any 

methods e.g matrix method. 

 

2.3 Properties of Least-Squares Estimators: The Gauss–Markov 

Theorem 

The least squares estimates possess some ideal or optimum properties. 

These properties are contained in the well-known Gauss–Markov 



theorem. To understand this theorem, we need to consider the best 

linear unbiasedness property of an estimator.  

 

An estimator, say the OLS estimator ˆ β2, is said to be a best linear 

unbiased estimator (BLUE) of β2 if the following hold: 

1. It is linear, that is, a linear function of a random variable, such as the 

dependent variable Y in the regression model. 
 

2. It is unbiased, that is, its average or expected value, E( ˆ β2), is equal to the true 

value, β2. 

3. It has minimum variance in the class of all such linear unbiased estimators; an 

unbiased estimator with the least variance is known as an efficient estimator. 

In the regression context it can be proved that the OLS estimators are BLUE. This 

is the gist of the famous Gauss–Markov theorem, which can be stated as follows: 

 

Gauss–Markov Theorem 

Given the assumptions of the classical linear regression model, the least-squares 

estimators, in the class of unbiased linear estimators, have minimum variance, that 

is, they BLUE. 

2.4 Properties of OLS Estimators under the Normality Assumption 

With the assumption that the disturbance terms follow the normal distribution ,the 

OLS estimators have the following properties(desirable statistical properties of 

estimators): 

1. They are unbiased. 

2. They have minimum variance. Combined with 1, this means that they are 

minimum variance unbiased, or efficient estimators. 

3. They have consistency; that is, as the sample size increases indefinitely, the 

estimators converge to their true population values. 

4. ˆ β1 (being a linear function of the error term ) is normally distributed with 

Mean: E( ˆ β1) = β1 

5. ˆ β2 (being a linear function of the error term) is normally distributed  

ˆ β2 ∼ N_(β2, σ2), Mean: E( ˆ β2) = β2 and var ( ˆ β2): σ2/∑ 𝑥𝑖
2. 

6. (n − 2)/(ˆσ 2/σ 2) is distributed as the χ2 (chi-square) distribution with (n − 2)df. 

This knowledge will help us to draw inferences about the true σ2 from the 

estimated σ2. 

7. ( ˆ β1, ˆ β2) are distributed independently of ˆσ 2.  



8. ˆ β1 and ˆ β2 have minimum variance in the entire class of unbiased estimators, 

whether linear or not. This result, due to Rao, is very powerful because, unlike the 

Gauss–Markov theorem, it is not restricted to the class of linear estimators only. 

Therefore, we can say that the least-squares estimators are best unbiased 

estimators (BUE); that is, they have minimum variance in the entire class of 

unbiased estimators. 

To sum up: The important point to note is that the normality assumption enables 

us to derive the probability, or sampling, distributions of ˆ β1 and ˆ β2 (both 

normal) and ˆσ 2 (related to the chi square). This simplifies the task of establishing 

confidence intervals and testing (statistical) hypotheses. 

 

 

EXAMPLE I: show that LSE are unbiased. 

 

SOLUTION 

Required to show that the estimators 𝛽  ̂ 𝑎𝑛𝑑 �̂� are unbiased for the parameters 

𝛽 𝑎𝑛𝑑 𝛼 in the model 𝑦 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖. that is ; 𝐸(�̂�) = 𝛽 𝑎𝑛𝑑 𝐸(�̂�) = 𝛼. 

 
2.4 MEAN AND VARIANCE OF THE ESTIMATORS 

The mean for �̂� = 𝐸(�̂�) = 𝛼 and the variance 𝑣(�̂�) = 𝑣(�̅� −

�̂��̅�)𝑡ℎ𝑖𝑠 𝑖𝑠 𝑓𝑟𝑜𝑚 �̂� = �̅� − �̂�𝑥.̅ Therefore; 𝑣(�̂�) = 𝑣(�̅�) + �̅�2𝑣(�̂�). 
 

The mean for �̂� = 𝐸(�̂�) = 𝛽 and the variance v(�̂�) =
𝛿2

∑(𝑥𝑖−�̅�)2
  where 𝛿2 =

∑ 𝑒𝑖
2

𝑛−𝑝
=

∑
(𝑦𝑖−�̂�𝑖)2

𝑛−𝑝
. 

 

2.5  INTERVAL ESTIMATION AND HYPOTHESIS TESTING 
 
2.51  Interval Estimation 
Instead of relying on the point estimate alone, we may construct an interval around 

the point estimator, say within two or three standard errors on either side of the 

point estimator, such that this interval has, say, 95 percent probability of including 

the true parameter value. This is roughly the idea behind interval estimation. 

 

Given a model of the form 𝑦 = 𝛽1 + 𝛽2𝑥𝑖 + 휀𝑖,𝑎ssume that we want to find out 

how “close,” say, ˆ β2 is to β2. For this purpose we try to find out two positive 



numbers δ and α, the latter lying between 0 and 1, such that the probability that the 

random interval ( ˆ β2 − δ, ˆ β2 + δ) contains the true β2 is 1 − α. Symbolically, 

Pr ( ˆ β2 − δ ≤ β2 ≤ ˆ β2 + δ) = 1 – α. Such an interval, if it exists, is known as a 

confidence interval; 1 − α is known as the confidence coefficient; and α (0 < α < 

1) is known as the level of significance.  The endpoints of the confidence interval 

are known as the confidence limits (also known as critical values), ˆ β2 − δ being 

the lower confidence limit and ˆ β2 + δ the upper confidence limit. 

 

An interval estimator, in contrast to a point estimator, is an interval constructed in 

such a manner that it has a specified probability 1 – α  of including within its limits 

the true value of the parameter.  

 

It is very important to know the following aspects of interval estimation: 

1. Since β2, although an unknown, is assumed to be some fixed number, either it 

lies in the interval or it does not. For the method described, the probability of 

constructing an interval that contains β2 is 1 − α. 

2. The interval is a random interval; that is, it will vary from one sample to the 

next because it is based on ˆ β2, which is random.  

3. Since the confidence interval is random, the probability statements attached to it 

should be understood in the long-run sense, that is, repeated sampling. 

 

4. The interval is random so long as ˆ β2 is not known. But once we have a specific 

sample and once we obtain a specific numerical value of ˆ β2, the interval is no 

longer random; it is fixed. In this case, we cannot say that the probability is 1 − α 

that a given fixed interval includes the true β2. In this situation, β2 is either in the 

fixed interval or outside it. Therefore, the probability is either 1 or 0.  

 
 
b) Confidence Intervals for Regression Coefficients β1 and β2 

Confidence Interval for β2 

We can use the normal distribution to make probabilistic statements about β2 

provided the true population variance σ2 is known. If σ2 is known, an important 

property of a normally distributed variable with mean μ and variance σ2 is that the 

area under the normal curve between μ ± σ is about 68 percent, that between the 

limits μ ± 2σ is about 95 percent, and that between μ ± 3σ is about 99.7 percent. 

But σ2 is rarely known, and in practice it is determined by the unbiased estimator 

ˆσ 2. If we replace σ by ˆσ , the t statistic is 𝑡 =
�̂�2−𝛽2

𝑠𝑒(�̂�2)
. where  se ( ˆ β2) now refers 

to the estimated standard error. It can be shown that the t variable thus defined 

follows the t distribution with n − 2 df. 



 

We can use the t distribution to establish a confidence interval for β2 as follows: 

Pr (−tα/2 ≤ t ≤ tα/2) = 1 – α. where the t value in the middle of this double 

inequality is the t statistic value computed and where tα/2 is the value of the t 

variable obtained from the t distribution for α/2 level of significance and n − 2 df; 

it is often called the critical t value at α/2 level of significance. 

 

The width of the confidence interval is proportional to the standard error of the 

estimator. That is, the larger the standard error, the larger is the width of the 

confidence interval. Put differently, the larger the standard error of the estimator, 

the greater is the uncertainty of estimating the true value of the unknown 

parameter. Thus, the standard error of an estimator is often described as a measure 

of the precision of the estimator (i.e., how precisely the estimator measures the 

true population value). 

ˆ β1 ± tα/2 se ( ˆ β1) 

Pr [ ˆ β1 − tα/2 se ( ˆ β1) ≤ β1 ≤ ˆ β1 + tα/2 se ( ˆ β1)] = 1 − α 

ˆ β2 ± tα/2 se ( ˆ β2) 

Pr [β2 − tα/2 se ( ˆ β2) ≤ β2 ≤ ˆ β2 + tα/2 se ( ˆ β2)] = 1 – α with n-2 df. 
 

EXAMPLE: CONSTRUCT A 95% CONFIDENCE INTERVAL FOR THE 

PARAMETER ESTIMATES USING THE DATA BELOW. 

 

X 77 50 71 72 81 94 96 99 67 

y 82 66 78 34 47 85 99 99 98 

 

 

c) Confidence Interval for σ2 

Under the normality assumption, the variable χ2 = (n − 2)
�̂�2

𝛿2
  follows the χ2 

distribution with n − 2 df. Therefore, we can use the χ2 distribution to establish a 

confidence interval for σ2. Pr (χ2 1−α/2 ≤ χ2 ≤ χ2α/2)= 1 − 𝛾 where χ21−α/2 and 

χ2 α/2 are two values of χ2 (the critical χ2 values) obtained from the chisquare 

table for n − 2 df in such a manner that they cut off 100(𝛾/2) percent tail areas of 

the χ2 distribution which gives the 100(1 − 𝛾)% confidence interval for σ2. 

Therefore confidence interval is 𝑃 [
(𝑛−2)�̂�2

𝑥𝛾
2

2  ≤  𝛿2 ≤  
(𝑛−2)�̂�2

𝑥
1−

𝛾
2

2 ] = 1 − 𝛾. 

 

 Hypothesis Testing: General Comments 



The theory of hypothesis testing is concerned with developing rules or procedures 

for deciding whether to reject or not reject the null hypothesis. There are two 

mutually complementary approaches for devising such rules, namely, confidence 

interval and test of significance. Both these approaches predicate that the variable 

(statistic or estimator) under consideration has some probability distribution and 

that hypothesis testing involves making statements or assertions about the value(s) 

of the parameter(s) of such distribution. 

 

 For example, we know that with the normality assumption ˆ β2 is normally 

distributed with mean equal to β2 and variance. If we hypothesize that β2 = 1, we 

are making an assertion about one of the parameters of the normal distribution, 

namely, the mean.  

 

2.52  HYPOTHESIS TESTING 

a) the confidence-interval approach 
Two-Sided or Two-Tail Test 

To illustrate the confidence interval approach, from regression results given as 

follows; the slope coefficient is 0.7240. Suppose we postulate that 

H0: β2 = 0.5 

H1: β2 <0.5. That is, the true slope coefficient is 0.5 under the null hypothesis but 

less than 0.5 under the alternative hypothesis. The null hypothesis is a simple 

hypothesis, statistical hypothesis is called a simple hypothesis if it specifies the 

precise value(s) of  the parameter(s) of a probability density function; otherwise, it 

is called a composite hypothesis because it does not have  a specific value. 

 

Two-sided hypothesis e.g H1: 𝜽 ≠ 𝜽𝟎, such a two-sided alternative hypothesis 

reflects the fact that we do not have a strong a priori or theoretical expectation 

about the direction in which the alternative hypothesis should move fr 

om the null hypothesis. 
 

Thus, the confidence interval provides a set of plausible null hypotheses. 

Therefore, if β2 under H0 falls within the 100(1 − α)% confidence interval, we do 

not reject the null hypothesis; if it lies outside the interval, we may reject it. 

In statistics, when we reject the null hypothesis, we say that our finding is 

statistically significant. On the other hand, when we do not reject the null 

hypothesis, we say that our finding is not statistically significant. 
 

  



b)  The Test-of-Significance Approach 

Testing the Significance of Regression Coefficients: The t Test 

An alternative but complementary approach to the confidence-interval method of 

testing statistical hypotheses is the test-of-significance approach. 

 

A test of significance is a procedure by which sample results are used to verify 

the truth or falsity of a null hypothesis. The key idea behind tests of significance 

is that of a test statistic (estimator) and the sampling distribution of such a statistic 

under the null hypothesis. The decision to accept or reject H0 is made on the basis 

of the value of the test statistic obtained from the data at hand. 

 

If the value of true β2 is specified under the null hypothesis, the t value can readily 

be computed from the available sample, and therefore it can serve as a test statistic. 

And since this test statistic follows the t distribution, confidence-interval 

statements such as the following can be made: 

Pr(−tα/2 ≤ˆ (β2 − β∗2)/se ( ˆ β2) ≤ tα/2) = 1 − α where β∗2  is the value of β2 under 

H0 and where −tα/2 and tα/2 are the values of t (the critical t values) obtained 

from the t table for (α/2) level of significance and n − 2 df 

In the confidence-interval procedure we try to establish a range or an interval that 

has a certain probability of including the true but unknown β2, whereas in the test-

of-significance approach we hypothesize some value for β2 and try to see whether 

the computed ˆ β2 lies within reasonable (confidence) limits around the 

hypothesized value. 

 

To test the hypothesis that there is no relationship between the variables x and Y 

using the model 𝑦 = 𝛼 + 𝛽𝑥, the null hypothesis is stated as ; H0: β=0 [no 

relationship between x and y]. if no prior information about the values of the 

regression parameters is available , the alternative hypothesis is stated as; HA: β≠0. 

 

The test statistic is given as 𝑡 =
𝛽

𝑠𝛽
 at n-2 degrees of freedom. For a two tailed test 

(β≠0), the acceptance region is −𝑡∝

2
,𝑛−2 ≤

𝛽

𝑠𝛽
≤ 𝑡∝

2
,𝑛−2. 

The best test is achieved if we take the alternative hypothesis as β<0, where the 

rejection region is −𝑡∝,𝑛−2 ≤
𝛽

𝑠𝛽
. 

If there is prior knowledge about the values of the parameters, 

𝐻0: 𝛽 =̂ 𝛽0 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑖𝑠 𝑡 =
�̂�−𝛽0

𝑠𝛽
 ~𝑡𝑛−2. 

 



Alternatively, the F- test can be used to test for a relationship between the 

variables. The acceptance region for the hypothesis is 
𝑆𝑆𝑅

(
𝑆𝑆𝐸

𝑁−2
)

≤ 𝐹(1,𝑁−2). 

 

 

c)The t Test of Significance: Decision Rules 

 

Type of H0: The H1: The Alternative Decision Rule: 

 Reject H0 If 

Two-tail:  β2 = β2* Vs  β2≠ β2* reject H0 if  |t | > tα/2,df 

Right-tail : β2 ≤ β2* Vs  β2 > β2* reject if  t > tα,df 

Left-tail:  β2 ≥ β2*  Vs β2 < β2* t reject if t < −tα,df 

 

Notes: β*2 is the hypothesized numerical value of β2,|t | means the absolute value 

of t, tα or tα/2 means the critical t value at the α or α/2 level of significance. 

df: degrees of freedom, (n − 2) for the two-variable model, (n − 3) for the three-

variable model, and so on. 

The same procedure holds to test hypotheses about β1. 

 

  



d) TESTING FOR SIGNIFICANCE OF REGRESSION USING THE F-

TEST. 

The hypothesis is stated as Ho: model not significance versus HA: model is 

significant at a given level of significance. The critical region is given as 𝐹𝑐 ≥
𝐹∝,[𝑘−1,𝑁−𝑘] (reject Ho). where k are the parameters estimated and n is the sample 

size. 

 

Using Analysis of variance (ANOVA), total variation is split into the explained 

variation and the unexplained variation; SST=SSR+SSE. 

Using the ANOVA table for regression, the significance of regression can be 

determined using the f-test. 

Source of 

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean sum of 

squares 

f-computed 

Regression SSR K-1 SSR/K-

1=MSR 

 

Error SSE N-K SSE/N-

K=MSE 

FC=MSR/MSE 

Total  SST N-1   

Compare the computed f-statistic with the tabulated statistic at a level of 

significance. 

 

Alternatively, for model significance the hypothesis can be stated as follows; Ho: 

𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: 𝑛𝑜𝑡 𝑎𝑙𝑙 𝛽′𝑠𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜. the f-statistic is 

obtained using 𝐹𝑐 =

𝑅2

(𝑘−1)

(1−𝑅2)

(𝑁−𝐾)

, where R2 is the coefficient of determination. 

 The critical region is 𝑓𝑐 ≥ 𝑓∝,[𝑘−1,𝑁−𝐾] 

 

EXAMPLE II: refer to example I above. Test for significance of regression using 

the f-test at 5% level of significance.  

➢ H0: not significant vs HA: significant 

➢ C.r: 𝑓 ≥ 𝑓∝,[1,𝑛−𝑘], 𝑓0.05,[1.5]=6.61 

Anova table  

S.o.v Degrees 
of 
freedom 

Sum of 
squares 

Mean 
sum of 
squares 

f-computed  

Regression 1 1383.929 1383.929 1383.929/87.5=15.816 

Error 5 437.50 87.5  



Total 6 1821.429   

➢ Decision: reject H0.  It is significant. 

 

 
EXAMPLE  
Given the data below for minimum bank deposits in thousands of shillings and 

number of new accounts opened. 

Branch Minimum deposit (x) New accounts (y) 
A 125 160 

B 100 112 

C 200 124 
D 75 28 

E 150 152 
F 175 156 

G 75 42 

H 175 124 
I 125 150 

J 200 104 
K 100 136 

i. Estimate regression model of the form �̂�=𝛽0 + 𝛽1𝑥𝑖.  

𝛽1 =
𝑛 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦

𝑛 ∑ 𝑥2 − (∑ 𝑥)2
=

(11 ∗ 186,200) − (1500 ∗ 1288)

(11 ∗ 226250) − 15002
=

116200

238750

= 0.487. 

𝛽0 = �̅� − 𝛽1�̅� = 117.091 − (0.487 ∗ 136.364) = 50.682 

Equation: 𝑦 = 50.682+0.487xi. 

ii. Variance for the estimator β1.  

𝑣(𝛽1) =
𝛿2

∑(𝑥 − �̅�)2
 



𝑤ℎ𝑒𝑟𝑒 𝛿2 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑠𝑦𝑥
2 =

∑ 𝑦2 − 𝛽0 ∑ 𝑦 − 𝛽1 ∑ 𝑥𝑦

𝑛 − 2

=
170,696 − (50.682 ∗ 1288) − (0.487 ∗ 186200)

11 − 2
= 1637.576 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒; 𝑣(𝛽1) =
1637.576

21704.546
= 0.0755. 

 

 

 

iii. Test the hypothesis that 𝛽1 = 0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝛽1 > 0 at 0.05 level of 

significance.  

➢ Ho: 𝛽1 = 0 𝑣𝑠 𝐻𝐴: 𝛽1 > 0 

➢ L.o.s α=0.05 

➢ C.r: 𝑡𝑐 > 𝑡∝,𝑛−2, 𝑡0.05,9 = 1.833 

➢ 𝑡𝑐 =
𝛽1

𝑠.𝑒(𝛽1)
=

0.487

√0.0755
= 1.7724 

➢ Decision: fail to reject H0. 

 

e) Testing the Significance of σ2: The χ2 Test 

As another illustration of the test-of-significance methodology, consider the 

following variable: 

 χ2 = (n − 2)ˆσ2/σ2 which follows the χ2 distribution with n − 2 df. For example, 

ˆσ2 = 0.8937 and df = 11. If we postulate that H0: σ2 = 0.6 versus H1: σ2 _= 0.6,  

it can be found that under H0, χ2 = 16.3845. If we assume α = 5%, the critical χ2 

values are 3.81575 and 21.9200. Since the computed χ2 lies between these limits, 

the data support the null hypothesis and we do not reject it. This test procedure is 

called the chi-square test of significance.  

 

 

 

2.6 BEST LINEAR UNBIASED ESTIMATION METHOD (BLUE) 

To derive the BLUE of the parameters 𝛼 𝑎𝑛𝑑 𝛽 requires the estimators to be; 

i. A linear combination of sample observations. That is , �̃� = ∑ 𝑐𝑖𝑦𝑖  where 

c =(c1,c2,…,cn) are constants to be determined such that , 

ii. �̃�is unbiased 

iii. �̃� has minimum variance. 



For unbiasedness  𝐸(𝛽) = 𝐸(∑ 𝑐𝑖𝑦𝑖) = 𝛽. 
Proof: 

• 𝐸(�̃�) = 𝐸(∑ 𝑐𝑖𝑦𝑖) = ∑ 𝑐𝑖𝐸(𝑦𝑖) but 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 휀𝑖 

• 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑖𝑛𝑔 𝑓𝑜𝑟 𝑦 

• 𝐸(∑ 𝑐𝑖𝑦𝑖) = ∑ 𝑐𝑖𝐸(𝛼 + 𝛽𝑥𝑖 + 휀𝑖) = ∑ 𝑐𝑖(𝛼 + 𝛽𝑥𝑖) = 𝛼 ∑ 𝑐𝑖 + 𝛽 ∑ 𝑐𝑖𝑥𝑖 

• 𝑓𝑜𝑟  �̃� to be unbiased; ∑ 𝑐𝑖 = 0 𝑎𝑛𝑑 ∑ 𝑐𝑖𝑥𝑖 = 1. 

• 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 above conditions are satisfied then; 𝐸(�̃�) = 𝐸(∑ 𝑐𝑖𝑦𝑖) =

𝛽 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑. 
 

The variance for �̃� = 𝑣(∑ 𝑐𝑖𝑦𝑖) =
𝛿2

∑(𝑥𝑖−�̅�)2
. 

 

EXERCISE: DETERMINE THE FORMULA FOR THE ESTIMATOR �̃�.  
 

 

  



CHAPTER THREE 

3.0  ESTIMATION  USING THE MAXIMUM LIKELIHOOD 

ESTIMATION  METHOD (MLE) 

 
A method of point estimation with some stronger theoretical properties than the 

method of OLS is the method of maximum likelihood (ML).  since from the 

regression model, the error terms  ui are assumed to be normally distributed, the 

ML and OLS estimators of the regression coefficients, the β’s, are identical, and 

this is true of simple as well as multiple regressions. The ML estimator of σ2 is 

Σˆu2
i /n. This estimator is biased, whereas the OLS estimator of σ2 =Σˆui

2/n-2, is 

unbiased. But comparing these two estimators of σ2, we see that as the sample size 

n gets larger the two estimators of σ2 tend to be equal. Thus, asymptotically (i.e., 

as n increases indefinitely), the ML estimator of σ2 is also unbiased. 

 

 (a) Compared to ML, the OLS is easy to apply; (b) the ML and OLS estimators of 

β1 and β2 are identical (which is true of multiple regressions too); and (c) even in 

moderately large samples the OLS and ML estimators of σ2 do not differ vastly. 

Appendix 4A 
 

3.1  Maximum Likelihood Estimation of Two-Variable Regression Model 

 

Assume that in the two-variable model Yi = β1 + β2Xi + ui ,the Yi are normally and 

independently distributed with mean = β1 + β2Xi and variance = σ2. As a result, 

the joint probability density function of Y1, Y2, . . . , Yn, given the preceding mean 

and variance, can be written as f (Y1, Y2, . . . , Yn | β1 + β2Xi , σ2). 

 

But in view of the independence of the Y’s, this joint probability density function 

can be written as a product of n individual density functions as 

f (Y1, Y2, . . . , Yn | β1 + β2Xi , σ2) = f (Y1 | β1 + β2Xi , σ2) f (Y2 | β1 + β2Xi , σ2) · 

· · f (Yn | β1 + β2Xi , σ2) (1) 

where ; f (Yi ) = 1/σ√2πexp−(Yi − β1 − β2Xi )2/2σ2  (2) which is the density function of a 

normally distributed variable with the given mean and variance. 

 

Substituting Equation (2) for each Yi into Equation (1) gives 

f (Yi , Y2, . . . , Yn | β1 + β2Xi , σ2) = 1/σn(√2π)n exp-Σ(Yi − β1 − β2Xi )2/2σ2 (3) 

If Y1, Y2, . . . , Yn are known or given, but β1, β2, and σ2 are not known, the 

function in Equation (3) is called a likelihood function, denoted by LF(β1, β2, σ2), 

and written as LF(β1, β2, σ2) = 1/σ n(√2π)n exp−Σ(Yi − β1 − β2Xi )2/2σ2  (4). 

 



The method of maximum likelihood, as the name indicates, consists of  

estimating the unknown parameters in such a manner that the probability of 

observing the given Y’s is as high (or maximum) as possible. Therefore, we have to 

find the maximum of the function in Equation (4). For differentiation it is easier to 

express Equation (4) in the log term as follows.2  

ln LF = −n ln σ − n2ln (2π) − Σ(Yi − β1 − β2Xi )2 /2σ2 = −n2ln σ2 − n2ln (2π) – 

Σ(Yi − β1 − β2Xi )2/2σ2     (5) 

 

If β1, β2, and σ2 are known but the Yi are not known, Eq. (4) represents the joint 

probability density function—the probability of jointly observing the Yi. 

 

Differentiating Equation (5) partially with respect to β1, β2, and σ2, we obtain 

∂ ln LF/∂β1= − 1/σ2(Yi − β1 − β2Xi )(−1) (6) 

∂ ln LF/∂β2= − 1/σ2(Yi − β1 − β2Xi )(−Xi ) (7) 

∂ ln LF/∂σ2= − n2σ2+ 1/2σ4^(Yi − β1 − β2Xi )2 (8) 

Setting these equations equal to zero (the first-order condition for optimization) 

and letting ˜ β1, ˜ β2, and ˜σ 2 denote the ML estimators, we obtain  

1/˜σ2(Yi − ˜ β1 − ˜ β2Xi ) = 0 (9) 

1/˜σ2(Yi − ˜ β1 − ˜ β2Xi )Xi = 0 (10) 

− n2˜σ 2+ 1/2˜σ 4_(Yi − ˜ β1 − ˜ β2Xi )2 = 0 (11) 

After  simplifying, Eqs. (9) and (10) yield 

 

ΣYi = n ˜ β1 + ˜ β2ΣXi (12)       ΣYi Xi = ˜ β1ΣXi + ˜ β2ΣX2i (13) 

which are precisely the normal equations of the least-squares theory . 

Therefore, the ML estimators, the ˜ β’s, are the same as the OLS estimators, the ˆ 

β’s.This equality is not accidental. Examining the likelihood (5), we see that the 

last term enters with a negative sign. Therefore, maximizing Equation (5) amounts 

to minimizing this term, which is precisely the least-squares approach. 

 

Substituting the ML ( = OLS) estimators into Equation (11) and simplifying, we 

obtain the ML estimator of ˜σ 2 as;˜σ2 = 1/nΣ(Yi − ˜ β1 − ˜ β2Xi )2= 1/nΣˆui
2 (14). 

From Equation (14) it is obvious that the ML estimator ˜σ 2 differs from the OLS 

estim ator  ˆσ2 = [1/(n − 2)]Σˆui
2 , which was shown to be an unbiased estimator of 

σ2.  Thus, the ML estimator of σ2 is biased. The magnitude of this bias can be 

easily determined as follows. 

 

We use ˜ (tilde) for ML estimators and ˆ (cap or hat) for OLS estimators. 

 

Taking the mathematical expectation of Equation (14) on both sides, we obtain 



E(˜σ 2) = 1/nEΣˆu I 2=Σn – 2/nΣσ2  = σ2 − 2nσ2     (15) which shows that ˜σ 2 is 

biased downward (i.e., it underestimates the true σ2) in small samples. But notice 

that as n, the sample size, increases indefinitely, the second term in Equation (15), 

the bias factor, tends to be zero. Therefore, asymptotically (i.e., in a very large 

sample), ˜σ 2 is unbiased too, that is, lim E(˜σ 2) = σ2 as n→∞. It can further be 

proved that ˜σ 2 is also a consistent estimator4; that is, as n increases indefinitely, 

˜σ 2 converges to its true value σ2. 

 

CHAPTER FOUR 

3.0  REGRESSION THROUGH THE ORIGIN 

There are occasions when the two-variable Population Regression Function (PRF) 

assumes the following form: 

 Yi = β2 Xi  + u  

In this model the intercept term is absent or zero, hence the name regression 

through the origin. 

 

Given a Sample Regression Function (SRF) namely, 

Yi = ˆ β2 Xi + ˆui ………………………………..(a) 

Now applying the OLS method  we obtain the following formulas 

for ˆ β2 and its variance . 

ˆ β2 =ΣXiYi/ΣXi
2   ,  𝑣(𝛽2̂) =

𝛿2

∑ 𝑋𝑖
2 and 𝛿2̂ =

∑ 𝑢𝑖
2

𝑛−1
 

when the intercept term is included in the model: Yi = ̂β1+ˆ β2 Xi + ˆui 

The  formulas for the estimators are;  

➢ β2 =Σxi yi /Σxi
2  

➢ var ( ˆ β2) = σ2/Σxi
2 

➢ ˆσ2 =Σˆui
2 /n− 2, where ui

2 is the error term determined using ∑ 𝑌 − 𝑌⏞)2. 
 

Where x and y are deviations from the mean. 

Although the interceptless or zero intercept model may be appropriate on 

occasions, there are some features of this model that need to be noted. First, 

Σˆui, which is always zero for the model with the intercept term (the conventional 

model), need not be zero when that term is absent. In short, Σˆui need not be zero 

for the regression through the origin. 

 

 Second, r2, the coefficient of determination, which is always nonnegative 

for the conventional model, can on occasions turn out to be negative for the 

interceptless model! This anomalous result arises because  r2 explicitly assumes 

that the intercept is included in the model. Therefore, the conventionally computed 



r2 may not be appropriate for regression-through-the-origin models. But one can 

compute what is known as the raw r2 for such models, which is defined as 

raw r2  = (ΣXiYi)2 /ΣXi
2 ΣYi

2 

Note: These are raw (i.e., not mean-corrected) sums of squares and cross 

products. 

Although this raw r2 satisfies the relation 0 < r2 < 1, it is not directly comparable 

to the conventional r2 value. For this reason some people do not report the r2 value 

for zero intercept regression models. 

 

Because of these special features of this model, one needs to exercise great caution 

in using the zero intercept regression model. Unless there is very strong a priori 

expectation, one would be well advised to stick to the conventional, intercept-

present model. This has a dual advantage. First, if the intercept term is included in 

the model but it turns out to be statistically insignificant (i.e., statistically equal to 

zero), for all practical purposes we have a regression through the origin.  Second, 

and more important, if in fact there is an intercept in the model but we insist on 

fitting a regression through the origin, we would be committing a specification 

error, thus violating Assumption 9 of the classical linear regression model. 

 

 

 

 

 

CHAPTER FIVE 

5.0 Multiple Regression Analysis: 

This is the analysis involving more than one explanatory variable. Given a 

regression model as 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ . +𝛽𝑘𝑥𝑘 + 𝑢𝑖, where β 0 is the 

intercept term. As usual, it gives the mean or average effect on Y of all the 

variables excluded from the model, although its mechanical interpretation is ;the 

Average   of Y when X1 and X2 etc are set equal to zero. The coefficients β1, β2 etc 

are called the partial regression coefficients. 

Assuming a model with two explanatory variables x1 and x2 and the model = 𝛽0 +
𝛽1𝑥1 + 𝛽2𝑥2 + 𝑢𝑖 , the following classical assumptions are fulfilled  if x1 and X2 

are nonstochastic;  

1. Linear regression model, or linear in the parameters.  

2. Fixed X values or X values independent of the error term. Here, this means 

we require zero covariance between ui and each X variables. 

cov (ui , X1i) and  cov (ui , X2i) = 0  

3. Zero mean value of disturbance ui . E(ui |X1i, X2i) = 0 for each i. 

4. Homoscedasticity or constant variance of ui .that is; var (ui ) = σ 2 



5. No autocorrelation, or serial correlation, between the disturbances. that is; 

cov ( ui , uj) = 0 for  i≠ j.  

6. The number of observations n must be greater than the number of parameters to 

be estimated, which is 3 in our current case.  

7. There must be variation in the values of the X variables.  

8. No exact collinearity between the X variables. No exact linear relationship 

between X1 and X2. 

9. There is no specification bias. The model is correctly specified.  

 

 
4.1 The Meaning of Partial Regression Coefficients 

As mentioned earlier, the regression coefficients β1 and β2 are known as partial 

regression or partial slope coefficients. The meaning of partial regression 

coefficient is as follows: β1 measures the change in the mean value of Y, E(Y), per 

unit change in X1, holding the value of X2 constant. Put differently, it gives the 

“direct” or the “net” effect of a unit change in X1 on the mean value of Y, net of 

any effect that X2 may have on mean Y. 

 

 Likewise, β2 measures the change in the mean value of Y per unit change in X2, 

holding the value of X1 constant. That is, it gives the “direct” or “net” effect of a 

unit change in X2 on the mean value of Y, net of any effect that X1 may have on 

mean Y. 

 

4.2 ESTIMATION OF PARAMETERS 

When we assume that the basic assumptions hold, the least squares estimators can 

be determined. For two explanatory variables x1 and x2, the least squares estimators 

can be determined using partial derivatives.  

➢ For the model 𝑦𝑖 = 𝛼 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 휀𝑖 , determine sums of squares and 

differentiate with respect to the parameters. 

➢ The coefficient of determination shows the percentage of Y explained by 

variations due to changes in x1 and x2 and is a measure of the goodness of 

fit. It is given by 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ �̂�𝑖
2

∑ 𝑦𝑖
2 =

∑(�̂�𝑖−𝑌)̅̅ ̅2

∑(𝑌𝑖−�̅�)2
 OR  

𝑅2 =
�̂�1 ∑ 𝑦𝑖𝑥1𝑖+�̂�2 ∑ 𝑦𝑖𝑥2𝑖

∑ 𝑦𝑖
2 . This formula does not put into consideration the degrees 

of freedom left in introducing a new explanatory variable to the model. To 



overcome this, the adjusted coefficient of multiple determination is used. This is 

given by; 𝑅2 = 1 −
(

∑ 𝑒𝑖
2

𝑛−𝑘
)

(
∑ 𝑦𝑖

2

𝑛−1
)

 . 

➢ The variances of the estimators of the parameters are estimated using; 

𝑣(�̂�1) =
𝛿2 ∑ 𝑥2

2

[𝛴𝑥1
2 ∑ 𝑥2

2−(∑ 𝑥1𝑥2)
2

]
 , 𝑣(�̂�2) =

𝛿2 ∑ 𝑥1
2

[𝛴𝑥1
2 ∑ 𝑥2

2−(∑ 𝑥1𝑥2)
2

]
  and  

𝑣(�̂�) = 𝛿2[
1

𝑛
+

�̅�1
2 ∑ 𝑥2

2+�̅�2
2 ∑ 𝑥1

2−2�̅�1�̅�2 ∑ 𝑥1𝑥2

[𝛴𝑥1
2 ∑ 𝑥2

2−(∑ 𝑥1𝑥2)
2

]
] Where 𝛿2 =

∑ 𝑒𝑖
2

𝑛−𝑘
=

∑(𝑌𝑖−�̂�𝑖)2

𝑛−𝑘
 

4.3 TESTING FOR SIGNIFICANCE OF REGRESSION 

Given the Ho: 𝛽𝑖 =0 [not significant] and the HA: 𝛽𝑖 ≠ 0 [significant] and a level of 

significance λ, the critical region is given as a two tailed test such that; −𝑡𝜆

2
,(𝑛−𝑘)

≤

𝑡 ≤ 𝑡𝜆

2
(𝑛−𝑘)

 where k are the parameters estimated. For two explanatory variables 

k=2 and the computed t-statistic is given as 𝑡 = �̂�𝑖/𝑠𝑒(�̂�𝑖). 

EXAMPLE: for the data below estimate the regression equation, variances 

and test the significance of the parameters at 5% 

Y 10 8 7 7 5 6 9 10 11 6 

X1 5 7 6 6 8 7 5 4 3 9 

X2 10 6 12 5 3 4 13 11 13 3 

 

SOLUTION 

• Fit a model of the form 𝒚 = 𝜶 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 

• Obtain the variances 

• Determine SST,SSE and SSR 

• Test for significance of the model using the f-test 

 

 


