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Derivation of the Michaelis-Menten Equation 

 The Michaelis-Menten equation is an important equation in biochemistry and as 

such it is imperative that you understand the derivation of this equation. By 

understanding the derivation, you will have insight into the assumptions that went into 

this model, and therefore you will have a better appreciation for the proper use of this 

equation as well as the limitations of this model. In the following sections you will see 

two different derivations of the Michaelis-Menten equation. When one is learning a 

subject for the first time, it often helps to have the same or similar information presented 

from alternative perspectives. One way might be clearer to you whereas the other way 

might be clearer to someone else. That is ok! You should familiarize yourself with both 

approaches, and then settle on the one that you prefer. The first derivation was adapted 

from “An Introduction to Enzyme Kinetics” by Addison Ault (J. Chem. Ed. 1974, 51, 

381 – 386).  

 First Derivation. We start with the kinetic mechanism shown in equation (eq) 1:  
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In eq 1, E is enzyme, S is substrate, ES is the enzyme-substrate complex, and P is 

product. This equation includes the assumption that during the early stages of the reaction 

so little product is formed that the reverse reaction (product combining with enzyme and 

re-forming substrate) can be ignored (hence the unidirectional arrow under k3). Another 

assumption is that the concentration of substrate is much greater than that of total enzyme 

([S] >> [Et]), so it can essentially be treated as a constant. 
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 From General Chemistry we can equate the rate of this process (k3[ES]) to the 

change in product concentration as a function of time (d[P]/dt), or, equivalently, we can 

designate the rate with an italicized v (v) as follows in eq 2: 

     ]ES[
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3kv
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                                                  (2) 

Because the concentration of the enzyme•substrate complex ([ES]) cannot be measured 

experimentally, we need an alternative expression for this term. Because the enzyme that 

we add to the reaction will either be unbound (E) or bound (ES) we can express the 

fraction of bound enzyme as follows: 
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In eq 3 Et is the concentration of total enzyme, and the other variables are as defined 

above. If we multiply both sides of eq 3 by Et we arrive at eq 4: 
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If we multiply the numerator and denominator of the right-hand side of eq 4 by 1/[ES], 

we are, in effect, multiplying by one and we do not change the value of this expression. 

When we do this we obtain eq 5: 
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We have almost achieved our goal of isolating [ES]. Next, we need to come up with an 

alternative expression for the ratio [E]/[ES]. We do this by recalling that a major 

assumption in enzyme kinetics is the steady-state assumption. Basically, it says the rate 

of change of [ES] as a function of time is zero: d[ES]/dt = 0. Another way to express the 
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steady-state assumption is that the rate of formation of ES equals the rate of breakdown 

of ES. We can express this latter statement mathematically as in eq 6: 

   ]ES)[(]ES[]ES[]S][E[ 32321 kkkkk                                    (6) 

The left-hand side of eq 6 expresses the rate of formation of ES (according to eq 1), and 

the right-hand side expresses the two ways that ES can break down (also according to eq 

1). We can rearrange eq 6 to isolate the ratio [E]/[ES]. When we do we get eq 7: 
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We now define a new constant, the Michaelis constant (Km), as follows in eq 8: 
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If we substitute Km back into eq 7 we obtain eq 9: 
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We now substitute the ratio Km/[S] from eq 9 in place of the ratio [E]/[ES] in eq 5 and we 

obtain eq 10: 
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If we multiply the numerator and denominator of the right-hand side of eq 10 by [S], we 

are, in effect, multiplying by one and we do not change the value of this expression. 

When we do this we obtain eq 11:  
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Now we have achieved our goal of isolating [ES] and we can substitute this alternative 

expression of [ES] into eq 2 and obtain eq 12: 
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Next, we imagine what happens to eq 12 when [S] > > Km as follows in eq 13: 
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The constant kcat in the right-hand most term of eq 13 is used to signify that k3 is 

considered the catalytic constant. Under such conditions, when [S] is said to be 

saturating, the enzyme is functioning as fast as it can and we define k3[Et] (or kcat[Et]) to 

be equal to Vmax, the maximum velocity that can be obtained. Therefore, eq 12 can be 

rewritten into the familiar form of the Michaelis-Menten equation (eq 14): 
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Next, we imagine what happens when Km > > [S] as follows in eq 15: 
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Since k = Vmax/ Km in eq 15, we refer to Vmax/ Km as an apparent (or pseudo) first order 

rate constant. Another way to look at a similar, related concept is to rewrite eq 14 as 

follows: 
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Since we are imagining the case where Km > > [S] we neglect [S] in the denominator and 

include the assumption that [Et]  [E] since at very low [S] relatively little [ES] should 

form:  
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Once again, since k = kcat/Km in eq 17, we refer to kcat/Km as an apparent second order 

rate constant. Because kcat/Km is a measure of the rate of the reaction divided by the term 

that reflects the steady-state affinity of the enzyme for the substrate, it is considered an 

indicator of the catalytic efficiency of the enzyme and sometimes is called the specificity 

constant. It also is more relevant to the physiological situation because in cells, [S] 

generally is equal to or less than Km. Is there an upper limit to the value that kcat/Km can 

approach? Yes, there is and the following shows how we can determine this limit. To 

illustrate this limit we first need to rewrite kcat/Km as follows:  
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Next, we imagine the case where k3 >> k2: 
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So we see that kcat/Km can approach k1 as a limiting value, and k1 is the second-order rate 

constant for the productive collision of enzyme and substrate and as such it is limited by 

diffusion to about 108 – 109 M1 s1. Thus, if we see an enzyme that has a kcat/Km value in 

the neighborhood of 108 – 109 M1 s1 we say that the enzyme has attained “catalytic 

perfection”. You will see later in the class that a number of enzymes that catalyze “near-

equilibrium” reactions in metabolic pathways are catalytically perfect. 

 Next, we return to eq 16 and consider what happens when v = ½ Vmax: 
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When we simplify eq 20 we find that Km = [S] (under the above conditions; i.e., v = ½ 

Vmax). So, in other words, Km is formally defined as a collection of rate constants (eq. 8), 

but it is also equal to the substrate concentration that gives half-maximal velocity of the 

enzyme-catalyzed reaction.  

 Before we discuss the second derivation, we will consider what happens when we 

take the reciprocal of both sides of eq 14. When we do this we obtain eq 21: 
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Eq 21 is in the form of an equation for a straight line (i.e., y = mx + b, with y = 1/v; m = 

Km/Vmax; x = 1/[S]; and b = 1/[Vmax]). When experimental data are plotted using this 

transformation the resulting plots are called double-reciprocal plots or Lineweaver-Burk 

plots in honor of the researchers who pioneered this method.  

 The authors of many textbooks extol the virtues of using Lineweaver-Burk plots 

to obtain estimates of Vmax and Km. I disagree strongly with this practice because initial 

velocity data determined at low substrate concentrations (where there is inherently more 

uncertainty since [S]  Km) end up being the points in a Lineweaver-Burk plot that have 

too much sway in determining the best-fit line through the data (see for example, 

“Disadvantages of Double Reciprocal Plots” by R. Bruce Martin, J. Chem. Ed. 1997, 74, 

1238 – 1240). In fact, Lineweaver and Burk recognized this problem and in their famous 

paper (J. Am. Chem. Soc. 1934, 56, 658 – 666) they had consulted with a statistician to 

determine the proper weighting factors for the data points. To repeat: eq 21 is not a useful 

form of the equation for obtaining estimates of Vmax and Km. Instead, one should use a 
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modern software program that allows for iterative fitting of the experimental data to 

estimate these parameters. (This type of fitting is called nonlinear least-squares fitting.) 

Eq 21 is useful for plotting data that have been obtained in the presence of increasing 

concentrations of an inhibitor. Such plots allow a researcher to “diagnose” the type of 

inhibition that is occurring. We will discuss this later on in class.     

 Second Derivation. For the second approach, we consider equations 1, 2, and 6 

(repeated for your convenience): 

                                    

E  +  S  ES  E  +  P
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                                                         ]ES[
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                                        ]ES)[(]ES[]ES[]S][E[ 32321 kkkkk                                (6) 

Once again, because we cannot experimentally measure [ES], we seek an alternative 

expression for this parameter so that when we obtain this alternative expression we can 

multiply it by k3 in eq 2 and thus obtain our desired rate equation. To proceed, we will 

divide the right-hand-most and left-hand-most expressions in eq 6 by (k2 + k3). Doing so 

will isolate [ES]. While we are at it, we will collect rate constants and define Km as we 

did above in eq 8: 
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 It looks like we succeeded in isolating [ES], but notice that on the right-hand side 

of eq 22 we have free enzyme (i.e., [E]). Just as we are unable to experimentally measure 

[ES], we also are unable to experimentally measure [E]. All we can say definitively is 
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that free enzyme ([E]) is equal to total enzyme ([Et]) minus the form of the enzyme that is 

bound to substrate ([ES]): 

                                                        ]ES[]E[]E[ t                                                        (23) 

Substituting the right-hand side of eq 23 in place of [E] in eq 22 leads to eq 24: 
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Multiplying both sides of eq 24 by Km and multiplying [Et] and [ES] by [S] in the 

numerator of the right-hand side of this equation leads to eq 25: 

                                                  ]S][ES[]S][E[]ES[ t mK                                            (25) 

Adding [ES][S] to both sides of eq 25 and then factoring out [ES] leads to eq 26: 

                                                  ]S][E[])S[](ES[ tmK                                                (26) 

Finally, dividing both sides of eq 26 by (Km + [S]) effectively isolates [ES] and yields eq 

27: 
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Eq 27 is the same expression that we obtained in eq 11. Our work is done. (Well, it’s 

done once we substitute the right-hand side of eq 27 into eq 2 and then substitute Vmax for 

k3[Et] as we did above when we obtained eq 14; these last few steps yield the sought after 

Michaelis-Menten equation.) 


