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Score vector and information matrix

* SCORE VECTOR

In the theory of maximum likelihood estimation, the score
vector (or simply, the score) is the gradient (i.e., the vector of
first derivatives) of the log-likelihood function with respect to

the parameters being estimated.



Definition
Definition Let 8 be a K x 1 parameter vector describing the distribution of a sample &. Let L(8:&) be

the likelihood function of the sample &, depending on the parameter 6. Let 1(6:£) be the log-likelihood

function
[(8:£) = In[L(8:£)]
Then, the K x 1 vector of first derivatives of I(8:¢) with respect to the entries of 8, denoted by
Val(8:£)

Is called the score vector.

The symbol v is read nabla and is often used to denote the gradient of a function.



Example Of a Normal Distribution

In the next example, the likelihood depends on a 2 x 1 parameter. As a consequence, the score is a
2 x 1 vector.

Example Suppose the sample & is a vector of » draws x,, ..., x, from a normal distribution with
mean u and variance ¢2. As proved in the lecture on maximum likelihood estimation of the
parameters of a normal distribution, the log-likelihood of the sample is
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The two parameters (mean and variance) together form a 2 x 1 vector



The partial derivative of the log-likelihood with respect to u Is
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and the partial derivative with respect to the variance 2 Is
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The score vector is
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How the score 1s used to find the maximum
likelihood estimator

The maximum likelihood estimator § of the parameter ¢ solves the maximization problem

b = arg max [(8:5)

Under some regularity conditions, the solution of this problem can be found by solving the first order
condition

Vel(:5) =0

that is, by equating the score vector to 0.



In Nutshell

* The first derivative of the log-likelihood function is called the Score
Function also known as Fishert’s score function.

e If we define the score function as

dlogL(8:y)
u(f) = .:"]B .

* Score is a vector of first partial derivatives, one for each element of 6.

* If the log-likelihood 1s concave, one can find the maximum likelihood
estimator by setting the score to zero, 1.e. by solving the system of
equations:

u(@) = 0.



Information Matrix

* The information matrix (also called Fisher information matrix) is the
matrix of second cross-moments of the score vector. The later is the
vector of first partial derivatives of the log-likelihood function with
respect to 1ts parameters.



Definition

Definition Let s be a Kk x 1 parameter vector characterizing the distribution of a sample &. Let L(8.&)
be the likelihood function of ¢, depending on the parameter @. Let 1(6:£) be the log-likelihood function

[(6:8) = In[L(8:2)]
Denote by

Vel(6:5)

the score vector, that is, the K x 1 vector of first derivatives of i(#:£) with respect to the entries of 4.
The information matrix () is the K x K matrix of second cross-moments of the score, defined by



I(60) = Eg[Vel(0:£)Vel(6:£)" ]

where the notation E: indicates that the expected value is taken with respect to the

probability distribution associated to the parameter 4.

For example, if the sample & has a continuous distribution, then the likelihood function is
L(6:&) = f5:6)
where fi£.9) is the probability density function of ¢, parametrized by 6, and the information matrix is

16) = [[Vel(i£:0)) Ve ln(AE:6)))RE:0)d



The information matrix is the covariance
matrix of the score

* Under mild regularity conditions, the expected value of the score is equal to
ZEro:

Eo[Vell6:5)] =0

* As a consequence,

I(8) = Ea[Vel(8:£)Vel(6:£)7]
= Eg[{Vel(8:£) — Eo[Vel(8:£)]-{Vel(8.S) — Eo[Vel(8:£)]} "]

* that 1s, the information matrix i1s the covariance matrix of the score.



Information equality

* Under mild regularity conditions, it can be proved that
I(8) = —Es| Vl(6:¢) |

where
Val(6:£)

is the matrix of second-order cross-partial dertvatives (so-called Hessian

matrix) of the log-likelithood.

* This equality 1s called information equality.



Information matrix of the normal distribution

* As an example, consider a sample
'Z_-'F = |r X1 i Xpg j|

made up of the realizations of IID normal random variables with
parameters { and 0% (mean and variance).

* In this case, the information matrix 1s

Huo)=| %




Proof

* The log-likelihood function is

uy”

as proved in the lecture on maximum likelihood estimation of the parameters of the normal
distribution. The score s is a 2 x 1 vector whose entries are the partial derivatives of the log-likelihood

with respect to p and ¢2:
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e The information matrix is

 We have
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where: in step @ we have used the fact that

E oaf(xi—m)x;—u)]=E, 2[x;—u]E, o[x; —u]=10

for i # 7 because the variables in the sample are independent and have mean equal to g; in step
we have used the fact that

E#:E: [(xj — ‘ujz] = ?arﬁﬁ:[_::j] = g2



* Moreover,
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where: in steps @ and [B| we have used the independence of the observations in the sample and in

step [B| we have used the fact that the fourth central moment of the normal distribution is equal to
3(62)°. Finally,
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where: in step E| we have used the facts that E,  :[x;] = ¢ and that

E,2[(ei— )5 —1)" | =E, 2l —wE, 2 [ (- p) ] =

for i =7 because the variables in the sample are independent; in step B| we have used the fact that
the third central moment of the normal distribution is equal to zero.




In Nutshell-The Information Matrix

* The score is a random vector with some interesting statistical properties.
In particular, the score evaluated at the true parameter value @ has mean
Zero

Eu(@) =0
and variance-covariance matrix given by the information matriz:

var[u(@)] = E[u(@)u’(0)] = 1(8).



* Under mild regularity conditions, the information matrix can also be
obtained as minus the expected value of the second derivatives of the

log-likelihood:
0? log L()

10 =—El=5600

* The matrix of negative observed second dertvatives 1s sometimes called
the observed information matrix.



Likelihood Ratio Tests

Notation. We'll assume that the probability density {or mass) function of X 15 f{x:&) where & represents one or more unknown
parameters. Then:

(1) Let ©Q (greek letter "omega") denote the total possible parameter space of &, that 1s, the set of all possible values of & as
specified in totality 1n the null and alternative hyvpotheses.

(2) Let Hy : # ¢ w denote the null hypothesis where & (greek letter "omega") 15 a subset of the parameter space €.

(3) Let H,4 : @ ¢ ' denote the alternative hypothesis where @' 1s the complement of & with respect to the parameter space
C)

-




Example

If the total parameter space of the mean i is Q = {u: —¢ < u < o0} and the null hypothesis is specified
as Hp: 1 = 3. how should we specify the alternative hypothesis so that the alternative parameter space

is the complement of the null parameter space?




Example
If the alternative hypothesis 1s H: ¢ = 3. how should we (technically) specify the null hypothesis so

that the null parameter space is the complement of the alternative parameter space?




Definition. Let:

(1) L(w) denote the maximum of the likelihood function with respect to # when & is
in the null parameter space w.

(2) L(f.!} denote the maximum of the likelihood function with respect to & when @ is
in the entire parameter space Q.

Then, the likelihood ratio is the quotient:
L(w)
L(%)

And. to test the null hypothesis Hy : # € w against the alternative hypothesis H, : 8 € /. the
critical region for the likelihood ratio test is the set of sample points for which:

\_ L@
L($)

.y

where 0 < k< 1. and £ is selected so that the test has a desired significance level a.




Example

A food processing company packages honey in
small glass jars. Each jar is supposed to contain 10
fluid ounces of the sweet and gooey good stuff.
Previous experience suggests that the volume X,
the volume in fluid ounces of a randomly selected
jar of the company's honey is normally distributed
with a known variance of 2. Derive the likelihood
ratio test for testing, at a significance level of a =
0.05, the null hypothesis Hy: 1 = 10 against the

alternative hypothesis Ha: u # 10.
























* END



