
Unit 8
OPERATING SYSTEM - MULTI-THREADING

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 1

What is Thread?
 A thread is a flow of execution through the process code, with its own program counter that keeps
track of which instruction to execute next, system registers which hold its current working variables,
and a stack which contains the execution history.

 A thread shares with its peer threads few information like code segment, data segment and open
files. When one thread alters a code segment memory item, all other threads see that.

 A thread is also called a lightweight process. Threads provide a way to improve application
performance through parallelism. Threads represent a software approach to improving performance
of operating system by reducing the overhead thread is equivalent to a classical process.

 Each thread belongs to exactly one process and no thread can exist outside a process. Each thread
represents a separate flow of control. Threads have been successfully used in implementing network
servers and web server. They also provide a suitable foundation for parallel execution of applications
on shared memory multiprocessors. The following figure shows the working of a single-threaded and
a multithreaded process.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 2

Thread

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 3

Difference between Process and Thread
 S.N. Process Thread

1 Process is heavy weight or resource intensive.
Thread is light weight, taking lesser resources than

a process.

2
Process switching needs interaction with operating

system.

Thread switching does not need to interact with

operating system.

3
In multiple processing environments, each process

executes the same code but has its own memory and

file resources.

All threads can share same set of open files, child

processes.

4
If one process is blocked, then no other process can

execute until the first process is unblocked.

While one thread is blocked and waiting, a second

thread in the same task can run.

5
Multiple processes without using threads use more

resources.
Multiple threaded processes use fewer resources.

6
In multiple processes each process operates

independently of the others.

One thread can read, write or change another

thread's data.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 4

Advantages of Thread
1. Threads minimize the context switching time.

2. Use of threads provides concurrency within a process.

3. Efficient communication.

4. It is more economical to create and context switch threads.

5. Threads allow utilization of multiprocessor architectures to a
greater scale and efficiency.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 5

Types of Thread
 Threads are implemented in following two ways −

1. User Level Threads − User managed threads.

2. Kernel Level Threads − Operating System managed threads acting on kernel, an operating
system core.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 6

User Level Threads

 In this case, the thread management
kernel is not aware of the existence of
threads.

 The thread library contains code for
creating and destroying threads, for
passing message and data between
threads, for scheduling thread execution
and for saving and restoring thread
contexts.

 The application starts with a single
thread.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 7

Advantages and Disadvantages
 Advantages

1. Thread switching does not require Kernel mode privileges.

2. User level thread can run on any operating system.

3. Scheduling can be application specific in the user level thread.

4. User level threads are fast to create and manage.

 Disadvantages

1. In a typical operating system, most system calls are blocking.

2. Multithreaded application cannot take advantage of multiprocessing.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 8

Kernel Level Threads

 In this case, thread management is done by the Kernel. There is no thread
management code in the application area. Kernel threads are supported directly
by the operating system. Any application can be programmed to be
multithreaded. All of the threads within an application are supported within a
single process.

 The Kernel maintains context information for the process as a whole and for
individuals threads within the process. Scheduling by the Kernel is done on a
thread basis. The Kernel performs thread creation, scheduling and management
in Kernel space. Kernel threads are generally slower to create and manage than
the user threads.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 9

Advantages and Disadvantages
 Advantages

1. Kernel can simultaneously schedule multiple threads from the same process on multiple
processes.

2. If one thread in a process is blocked, the Kernel can schedule another thread of the same
process.

3. Kernel routines themselves can be multithreaded.

 Disadvantages

1. Kernel threads are generally slower to create and manage than the user threads.

2. Transfer of control from one thread to another within the same process requires a mode
switch to the Kernel.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 10

Multithreading Models
 Some operating system provide a combined user level thread and Kernel level
thread facility. Solaris is a good example of this combined approach. In a
combined system, multiple threads within the same application can run in
parallel on multiple processors and a blocking system call need not block the
entire process.

 Multithreading models are three types

1. Many to many relationship.

2. Many to one relationship.

3. One to one relationship.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 11

Many to Many Model

 The many-to-many model multiplexes any number of
user threads onto an equal or smaller number of
kernel threads.

 The following diagram shows the many-to-many
threading model where 6 user level threads are
multiplexing with 6 kernel level threads.

 In this model, developers can create as many user
threads as necessary and the corresponding Kernel
threads can run in parallel on a multiprocessor
machine. This model provides the best accuracy on
concurrency and when a thread performs a blocking
system call, the kernel can schedule another thread for
execution.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 12

Many to One Model
 Many-to-one model maps many user level
threads to one Kernel-level thread. Thread
management is done in user space by the thread
library. When thread makes a blocking system
call, the entire process will be blocked. Only one
thread can access the Kernel at a time, so
multiple threads are unable to run in parallel on
multiprocessors.

 If the user-level thread libraries are implemented
in the operating system in such a way that the
system does not support them, then the Kernel
threads use the many-to-one relationship modes.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 13

One to One Model
 There is one-to-one relationship of user-
level thread to the kernel-level thread. This
model provides more concurrency than the
many-to-one model. It also allows another
thread to run when a thread makes a
blocking system call. It supports multiple
threads to execute in parallel on
microprocessors.

 Disadvantage of this model is that creating
user thread requires the corresponding
Kernel thread. OS/2, windows NT and
windows 2000 use one to one relationship
model.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 14

Difference between User-Level & Kernel-Level Thread

S.N. User-Level Threads Kernel-Level Thread

1
User-level threads are faster to create and

manage.

Kernel-level threads are slower to create and

manage.

2
Implementation is by a thread library at the user

level.

Operating system supports creation of Kernel

threads.

3
User-level thread is generic and can run on any

operating system.

Kernel-level thread is specific to the operating

system.

4
Multi-threaded applications cannot take

advantage of multiprocessing.
Kernel routines themselves can be multithreaded.

DR. BUSINGE PHELIX MBABAZI ABWOOLI MPHELIXX@GMAIL.COM 15

