Unit 7

SCHEDULING ALGORITHM

A Process Scheduler

A Process Scheduler schedules different processes to be assigned to the CPU based on particular scheduling algorithms.

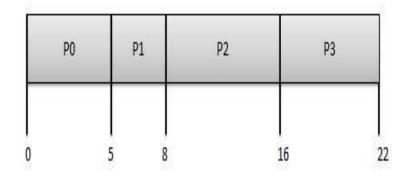
There are six popular process scheduling algorithms which we are going to discuss

- 1. First-Come, First-Served (FCFS) Scheduling
- 2. Shortest-Job-Next (SJN) Scheduling
- 3. Priority Scheduling
- 4. Shortest Remaining Time
- 5. Round Robin(RR) Scheduling
- 6. Multiple-Level Queues Scheduling

Algorithms

These algorithms are either **non-preemptive or preemptive**. Nonpreemptive algorithms are designed so that once a process enters the running state, it cannot be preempted until it completes its allotted time, whereas the preemptive scheduling is based on priority where a scheduler may preempt a low priority running process anytime when a high priority process enters into a ready state.

First Come First Serve (FCFS)


- 1. Jobs are executed on first come, first serve basis.
- 2. It is a non-preemptive, pre-emptive scheduling algorithm.
- **3**. Easy to understand and implement.
- 4. Its implementation is based on FIFO queue.
- 5. Poor in performance as average wait time is high.

First Come First Serve (FCFS)

Process	Arrival Time	Execute Time	Service Time
PO	0	5	0
P1	1	3	5
P2	2	8	8
P3	3	6	16

Wait time of each process is as follows -

Process	Wait Time : Service Time - Arrival Time
P0	0 - 0 = 0
P1	5 - 1 = 4
P2	8 - 2 = 6
P3	16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

- 1. This is also known as **shortest job first**, or SJF
- 2. This is a non-preemptive, pre-emptive scheduling algorithm.
- **3**. Best approach to minimize waiting time.
- 4. Easy to implement in Batch systems where required CPU time is known in advance.
- 5. Impossible to implement in interactive systems where required CPU time is not known.
- 6. The processer should know in advance how much time process will take.

Shortest Job Next (SJN)

Wait time of each process is as follows -

Process	Arrival Time	Execute Time	Service Time		
PO	0	5	3		
P1	1	3	0		
P2	2	8	16		
P3	3	6	8		

Process	Wait Time : Service Time - Arrival Time
P0	3 - 0 = 3
P1	0 - 0 = 0
P2	16 - 2 = 14
P3	8 - 3 = 5

P	1	PO	P3		P2
0	3	8	}	16	22

Average Wait Time: (3+0+14+5) / 4 = 5.50

Priority Based Scheduling

- 1. Priority scheduling is a non-preemptive algorithm and one of the most common scheduling algorithms in batch systems.
- 2. Each process is assigned a priority. Process with highest priority is to be executed first and so on.
- **3**. Processes with same priority are executed on first come first served basis.
- 4. Priority can be decided based on memory requirements, time requirements or any other resource requirement.

Priority Based Scheduling

Process	Arrival Time	Execute Time	Priority	Service Time
PO	0	5	1	9
P1	1	3	2	6
P2	2	8	1	14
P3	3	6	3	0

P3	Р	1	20	P2
0	6	9	14	22

Wait time of each process is as follows -

Process	Wait Time : Service Time - Arrival Time
P0	9 - 0 = 9
P1	6 - 1 = 5
P2	14 - 2 = 12
P3	0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5

Shortest Remaining Time

- 1. Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.
- 2. The processor is allocated to the job closest to completion but it can be preempted by a newer ready job with shorter time to completion.
- 3. Impossible to implement in interactive systems where required CPU time is not known.
- 4. It is often used in batch environments where short jobs need to give preference.

Example

Four jobs arrived in quick succession (1 CPU cycle a part) as shown below. Use SRT algorithm.

Arrival time	e: 0		1	5		6						
Jop:	А		В	С		D						
CPU cycle:	6		3	1		4						
Here Joi A		-	i job I N	B is pre-	empted b	zause job E by job C be resume be Job D n Job D	cause jo cause jp in next b	b C has les b C has f ecause it r Here job A Job	ss CPU tin inished.	ne remain CPU tim	e to finish	n than Job A
0	I	1	2	<u> </u>	3	5		A 9		14		
In the	is cas	e the	turn	aroun	d time i	s the com	pletion	time of e	ach job m	inus its	arrival t	ime.
	aroun	ıd:		B 4 time	C 1 =	D 6 <u>14 + 4</u>	$\frac{+1+6}{4}$	= 6.25				

Round Robin Scheduling

- 1. Round Robin is the preemptive process scheduling algorithm.
- 2. Each process is provided a fix time to execute, it is called a quantum.
- 3. Once a process is executed for a given time period, it is preempted and other process executes for a given time period.
- 4. Context switching is used to save states of preempted processes

Round Robin Scheduling

Wait time of each process is as follows -

 P0
 P1
 P2
 P3
 P0
 P2
 P3
 P2

 0
 3
 6
 9
 12
 14
 17
 20
 22

Quantum = 3

Process	Wait Time : Service Time - Arrival Time
PO	(0 - 0) + (12 - 3) = 9
P1	(3 - 1) = 2
P2	(6 - 2) + (14 - 9) + (20 - 17) = 12
P3	(9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other existing algorithms to group and schedule jobs with common characteristics.

- 1. Multiple queues are maintained for processes with common characteristics.
- 2. Each queue can have its own scheduling algorithms.
- 3. Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to the CPU based on the algorithm assigned to the queue.